摘要
传统的恒温恒湿空调温湿度耦合控制在去除机房显热负荷的同时消除了潜热负荷,为保持室内温湿度环境符合规范要求,降温除湿后需要再进行再热与加湿。不断除湿加湿现象造成了能量的不必要浪费。针对机房专用空调系统温湿度耦合引起的不断加热加湿,对机组临界盘管运行模式提出优化方案,优化蒸发器K、F及提高送风量来提高蒸发温度,进而提高蒸发器表面温度使之高于房间室内温度对应的露点温度,使蒸发器在干盘管模式运行,该方案能够取消再热与加湿,并且无冷凝水析出。利用TRNSYS软件建模,通过实验验证,对系统在不同热湿负荷工况时进行模拟分析,结果表明,该模式在不同工况下均能保证机房室内设备安全运行。
Temperature and humidity of coupling control of traditional CRAC removed the sensible heat load in the room and at the same time eliminated the latent heat load, in order to maintain the indoor temperature and humidity meet the specification requirements, need to re-heat and humidification after cooling and dehumidification. The phenomena of continuous humidifying and dehumidifying caused the unnecessary waste of energy. Be aimed at the critical coil operating mode of air-conditioning system for traditional electronic machine room, this paper put forward the optimization scheme, optimize the KF of evaporator and improve the air flow to improve the evaporation temperature, it can improve the surface temperature of the evaporator which is higher than the dew point temperature of the air in room, so evaporator coil can work in the dry mode, the program can cancel reheating and no condensate water. In this thesis, it used TRNSYS software to build a model with experimental verification, it analyzed different heat and moisture, The result shows that The model under different conditions can ensure the safe operation of the equipment in room.
出处
《制冷与空调(四川)》
2015年第3期302-305,共4页
Refrigeration and Air Conditioning
关键词
恒湿空调系统
临界盘管
表面温度
TRNSYS
Constant temperature and humidity air conditioning system
Critical coil
surface temperature
TRNSYS