期刊文献+

冗余驱动仿下颌运动机器人工作空间分析及试验验证 被引量:10

Workspace Analysis and Experimental Verification of a Redundantly Actuated Jaw Movement Robot
原文传递
导出
摘要 根据人类下颌系统冗余驱动的生理特性,即下颌受颞下颌关节约束且受多于本身自由度数目的下颌肌肉驱动的特点,介绍了一种采用点接触高副模拟人体颞下颌关节的6PUS-2HKP(higher kinematic pair)冗余驱动并联机构来完成下颌运动,该机构可应用于牙科义齿性能测试.首先,建立机器人的坐标系,针对机构存在点接触高副的特点,分析和推导了冗余并联机构的独立位置参数和运动学方程.然后,采用下颌运动轨迹描记仪对实验对象下颌切点边缘性运动进行了采集.通过分析各驱动机构及点接触高副的运动范围,采用数值分析的方法获得了机器人的工作空间.最后,采用实验的方法,测量了仿下颌运动机器人做最大运动时下颌切点的运动轨迹.通过对比实验对象切点边缘性运动和工作空间仿真结果可知,该仿下颌运动机器人能够满足人类下颌运动空间要求. The mandible is constrained by temporomandibular joint (TMJ) and actuated by more numbers of muscles than its own degrees of freedom (DOF), so the human mastication system is redundantly actuated. Based on this characteristics, a redundantly actuated parallel mechanism with point contact higher kinematic pair (6PUS-2HKP) for simulating mastication movement is introduced, which can be used for dental materials testing. Firstly, the coordinate system of the robot is established. Considering the characteristics of existing point contact higher kinematic pairs, the position parameters and the kinematics equation of the redundant parallel mechanism are analyzed and derived. The border movement of the test subjects’ mandibular incisor point is obtained by using the mandibular kinesiograph in the experiment. The workspace of the redundantly actuated robot is analyzed with numerical method through calculating the movement ranges of the driving rods and the point contact higher kinematic pairs. The trajectory of the lower incisor point of the robot is measured through experiment when the robot moves along the edge of the largest workspace. Comparing with test subjects’ border movement and the simulated workspace result, it is shown that the jaw movement robot can meet the movement space requirements of the mandible.
出处 《机器人》 EI CSCD 北大核心 2015年第3期286-297,共12页 Robot
基金 国家863计划资助项目(2013AA040303)
关键词 仿下颌运动机器人 冗余驱动 点接触高副 并联机构 工作空间 jaw movement robot redundant actuation point contact higher kinematic pair parallel mechanism workspace
  • 相关文献

参考文献21

  • 1丛明,温海营,刘同占,刘冬.基于生物力学结构的咀嚼机器人建模[J].华中科技大学学报(自然科学版),2011,39(S2):13-17. 被引量:7
  • 2Koolstra J H, van Eijden T M G J. A method to predict mus- cle control in the kinematically and mechanically indeterminate human masticatory system[J]. Journal of Biomechanics, 2001, 34(9): 1179-1188.
  • 3Lewis M, Hunt N, Shah R. Masticatory muscle structure and function[M]//Craniofacial Muscles. New York, USA: Springer, 2013.
  • 4Takanobu H, Takanishi A, Kato I. Design of a mastication robot mechanism using a human skull model[C]//IEEE/RSJ Interna- tional Conference on Intelligent Robots and Systems. Piscat- away, USA: IEEE, 1993: 203-208.
  • 5丛明,刘同占,温海营,杜婧,徐卫良.一种新型仿下颌运动机器人设计及运动性能分析[J].机器人,2013,35(2):239-248. 被引量:10
  • 6Cong M, Wen H Y, Du J, et al. Kinematics performance analy- sis of a jaw movement robot[C]//19th International Conference on Mechatronics and Machine Vision in Practice. Piscataway, USA: IEEE, 2012: 316-321.
  • 7Xu W L, Bronlund J E. Mastication robots[M]. Berlin, Ger- many: Springer, 2010.
  • 8Takanobu H, Maruyama T, Takanishi A, et al. Mouth opening and closing training with 6-DOF parallel robot[C]//IEEE Inter- national Conference on Robotics and Automation. Piscataway, USA: IEEE, 2000: 1384-1389.
  • 9Younong Wu,Peter Cathro,Victor Marino.Fracture resistance and pattern of the upper premolars with obturated canals and restored endodontic occlusal access cavities[J].The Journal of Biomedical Research,2010,24(6):474-478. 被引量:3
  • 10DeLong R, Douglas W H. An artificial oral environment for test- ing dental materials[J]. IEEE Transactions on Biomedical Engi- neering, 1991, 38(4): 339-345.

二级参考文献49

  • 1饶青,白师贤.6-6型Stewart机器人的可操作性分析及其定义[J].机器人,1994,16(6):345-349. 被引量:16
  • 2Rohrle O, Pullan A J. Three-dimensional finite element mod- elling of muscle forces during mastication[J]. Journal of Biome- chanics, 2007, 40(15): 3363-3372.
  • 3Hannam A C. Jaw muscle structure and function[M]//Science and Practice of Occlusion. Quintessence Publishing, 1997: Hanover Park, IL, USA: 41-49.
  • 4Cong M, Chang Z B, Du Y, et al. Modeling and simulation of masticatory robot[C]//IEEE-RAS International Conference on Humanoid Robots. Piscataway, NJ, USA: IEEE, 2010: 198-203.
  • 5Alemzadeh K, Raabe D. Prototyping artificial jaws for the Bris- tol Dento-Munch robo-simulator[C]//Annual International Con-ference of the IEEE Engineering in Medicine and Biology. Pis- cataway, NJ, USA: IEEE, 2007: 1453-1456.
  • 6CaUegari M, Marzetti E Proposal of a mechatronic system for reading and analysis of jaw movements and denture test- ing[C]//Intelligent Manipulation and Grasping International Conference. Genova, Italy: Grafica KC, 2004: 165-171.
  • 7Xu W L, Bronlund J, Kieser J. Choosing new ways to chew: A robotic model of the human masticatory system for reproducing chewing behaviors[J]. IEEE Robotics and Automation Maga- zine, 2005, 12(2): 90-98.
  • 8Xu W L, Bronlund J. Mastication robots[M]. Berlin, Germany: Springer, 2010.
  • 9Bowey C, Burgess D. Robotic temporomandibular joint project [R]. Adelaide, Australia: University of Adelaide, 2005.
  • 10Hayashi T, Tanaka S, Nakajima S, et al. Control mechanism of an autonomous jaw-movement simulator, JSN/1C, during open-close movement[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Piscataway, NJ, USA: IEEE, 1996: 613-614.

共引文献19

同被引文献93

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部