期刊文献+

基于主动偏心轮的全方位移动机器人航位推算与跟踪控制 被引量:3

Dead Reckoning and Tracking Control of Omnidirectional Mobile Robots with Active Caster Wheels
原文传递
导出
摘要 针对基于主动偏心轮的全方位移动机器人系统,提出了一种基于冗余码盘的航位推算方法和一种具有饱和约束的轨迹跟踪控制器.具体而言,首先分析了车轮发生滑动的原因,考虑到机器人随动轮相对于主动轮不易打滑的特性,设计了具有冗余码盘的随动轮结构.基于该结构,将机器人航位推算转化为一个含约束的最小二乘问题.实验结果表明:与未考虑随动轮约束的传统方法相比,该方法降低了轮子打滑的影响,提高了航位推算的精度.考虑到实际机器人系统的速度控制量具有上限,基于李亚普诺夫方法设计了含饱和约束的轨迹跟踪控制器,并对其稳定性和有界性进行证明.仿真与实验结果表明本文提出的控制器具有良好的性能,同时能够满足控制量的饱和约束. For an omnidirectional mobile robot with active caster wheels, a redundant encoders based dead reckoning method is proposed, and a trajectory tracking controller is further presented in the presence of velocity saturation constraints. Specifically, the reasons for wheel slipping are analyzed firstly, and then a passive caster wheel with redundant encoders are designed and equipped on the robot, inspired by the fact that the passive caster wheels present less slipping than the active casters. Subsequently, the dead reckoning problem is transformed into an equality-constrained linear least square problem. Experimental results show that, compared with the traditional dead reckoning method without redundant encoders, the proposed dead reckoning method alleviates the effects of the slipping on localization and improves the localization precision. Considering that the practical velocities are bounded for motors, a trajectory tracking controller is designed in the presence of such input saturation constraints, and the stability is proven by Lyapunov-based techniques while ensuring the velocity saturation constraints to be satisfied. Both simulation and experimental results demonstrate that the proposed controller presents superior performance, while satisfying the control saturation constraints.
出处 《机器人》 EI CSCD 北大核心 2015年第3期361-368,共8页 Robot
基金 国家自然科学基金资助项目(61203333) 教育部高等学校博士学科点专项科研基金资助项目(20120031120040) 天津市应用基础与前沿技术研究计划资助项目(13JCQNJC03200)
关键词 全方位移动机器人 主动偏心轮 航位推算 轨迹跟踪 omnidirectional mobile robot active caster wheel dead reckoning trajectory tracking
  • 相关文献

参考文献16

  • 1Zhang X B, Fang Y C, Liu X. Motion-estimation-based visual servoing of nonholonomic mobile robots[J]. IEEE Transactions on Robotics, 2011, 27(6): 1167-1175.
  • 2Siegwart R, Nourbakhsh I R, Scaramuzza D. Introduction to autonomous mobile robots[M]. Cambridge, USA: MIT Press, 2006.
  • 3赵冬斌,易建强,邓旭玥.全方位移动机器人结构和运动分析[J].机器人,2003,25(5):394-398. 被引量:50
  • 4Yi B J, Kim W K. The kinematics for redundantly actuated om- nidirectional mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2000: 2485-2492.
  • 5Chung J H, Yi B J, Kim W K, et al. The dynamic modeling and analysis for an omnidirectional mobile robot with three cast- er wheels[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2003: 521-527.
  • 6Deng X Y, Zhao D B, Yi J Q. Motion and squeeze force con- trol for omnidirectional wheeled mobile robots[C]//Proceedings of the American Control Conference. Piscataway, USA: IEEE, 2006: 5608-5613.
  • 7Zhao D B, Deng X Y, Yi J Q. Motion and internal force con- trol for omnidirectional wheeled mobile robots[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(3): 382-387.
  • 8邓旭玥,易建强,赵冬斌.一种全方位移动机器人的控制方法[J].电机与控制学报,2005,9(2):139-144. 被引量:4
  • 9邓旭玥,易建强,赵冬斌.一种全方位移动机器人的运动学分析[J].机器人,2004,26(1):49-53. 被引量:24
  • 10Park T B, Lee J H, Yi B J. Optimal design and actuator sizing of redundantly actuated omni-directional mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscat- away, USA: IEEE, 2002: 732-737.

二级参考文献37

  • 1杨福广 戴炬 朱苏宁.由OW组成的全方位移动机器人运动问题分析[J].计算机科学,2002,29(10):41-43.
  • 2Campion G, Bastin G B, D'Andrea-Novel. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation. 1996, 12(1): 47-62.
  • 3Muir P F, Neuman, C P. Kinematic modeling for feedback control of an omnidirectional wheeled mobile robot[ A ]. Proceedings of the 1987 IEEE International Conference On Robotics and Automation[C]. 1987. 1772 - 1778.
  • 4West M, Asada H H. Design and control d ball wheel omnidirectional vehicles[A]. Proceedings d the 1995 IEEE International Conference on Robotics and Automation[C]. 1995. 1931 - 1938.
  • 5Tahboub K A, Asada H H. Dynamics analysis and control of a holonomic vehicle with a continuously variable transmission[J].ASME Journal of Dynamic Systems, Measurement, and Control. 2002,124(3): 118-126.
  • 6Wilson L, Williams C, Yance J, etc. Design and modeling of a redundant omni-dimctional RoboCup Goalie[ A ]. Proceedings Robo-Cup 2001 International Symposium[C]. Seattle: 2001.
  • 7Carter B, Good M, Dorohoff M, etc. Mechanical design and modeling of an omni-directional RoboCup player[ A ]. RoboCup AI Conference[C]. Seattle WA: 2001.1 -10.
  • 8Byun K S, IGm S J, Song J B. Design of continuous alternate wheels for omnidirectional mobile robots[J]. Proceedings of the 2001 IEEE International Conference on Robotics and Automation. 2001,1: 767-772.
  • 9Paromtchik I E, Rembold U. A motion generation approach for an omnidirectional vehicle[A]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation[C]. San Francisco:2000. 1213 - 1218.
  • 10Pin F G, Killough S M. A new family d omnidirectional and holonomic wheeled platforms for mobile mbots[J]. IEEE Transactions on Robotics and Automation. 1994,10(4) :480-489.

共引文献81

同被引文献16

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部