期刊文献+

考虑结构变形的机器人运动学标定及补偿 被引量:30

Kinematic Calibration and Compensation for a Robot with Structural Deformation
原文传递
导出
摘要 针对一种3P3R型串联机器人,建立了参考零位模型与DH(Denavit-Hartenberg)模型的混合运动学模型,将直线运动部分与旋转运动部分分开建模,能够更好地描述机器人不同机械结构的几何关系,在此基础上提出了结合几何辨识和参数辨识的两步标定方法.然后,结合机器人的机械结构特点,分析了机器人在操作大型零件过程中的结构变形,并提出了考虑结构变形的运动学补偿模型.最后,使用激光跟踪仪完成了机器人标定实验,通过对比空载和加载情况下的定位误差,验证了运动学标定和补偿的效果.结果表明,混合运动模型采用两步参数辨识能够在空载情况下取得较高的标定精度,而运动学补偿模型则能够在加载情况下对运动学进行较好的变形误差补偿. A hybrid kinematic model consisting of zero-reference position model and DH (Denavit-Hartenberg) model is proposed for a 3P3R structured robot. The linear motion part and the rotational motion part are separated in this model for better description of geometric relationship among different mechanical structures. And a two-step calibration method with geometric and parametric identification is proposed for this model. Then the structural deformation of the robot during manipulating the large scale part is analyzed with the structural features of the robot, and a kinematic compensation model considering structural deformation is proposed. Finally, a calibration experiment is conducted with a laser tracker, the effects of the kinematic calibration and compensation are evaluated by comparing the positioning errors of no-load operation and loaded operation. The results show that the hybrid kinematic model with two-step parameter identification method works well for the no-load operation and that the compensation model can provide a good compensation for kinematic errors due to deformation under heavy load.
出处 《机器人》 EI CSCD 北大核心 2015年第3期376-384,共9页 Robot
基金 国家自然科学基金资助项目(51105218)
关键词 机器人标定 运动学补偿 激光跟踪仪 结构变形 robot calibration kinematic compensation laser tracker structural deformation
  • 相关文献

参考文献14

  • 1Mooring B W, Roth Z S, Driels M R. Fundamentals of manipu- lator calibration[M]. New York, USA: Wiley, 1991.
  • 2Roth Z S, Mooring B W, Ravani B. An overview of robot cal- ibration[J]. IEEE Journal of Robotics and Automation, 1987, 3(5): 377-385.
  • 3Kazerounian K, Qian G Z. Kinematic calibration of robotic ma- nipulators[J]. ASME Journal of Mechanisms, Transmission and Automation in Design, 1989, 111(4): 482-487.
  • 4Dumas C, Caro S, Cherif M, et al. Joint stiffness identification of industrial serial robots[J]. Robotica, 2012, 30(4): 649-659.
  • 5Meggiolaro M A, Dubowsky S, Mavroidis C. Geometric and elastic error calibration of a high accuracy patient positioning system[J]. Mechanism and Machine Theory, 2005, 40(4): 415- 427.
  • 6Lightcap C, Hamner S, Schmitz T, et al. Improved positioning accuracy of the PA10-6CE robot with geometric and flexibili- ty calibration[J]. IEEE Transactions on Robotics, 2008, 24(2): 452-456.
  • 7王一,刘常杰,任永杰,叶声华.工业坐标测量机器人定位误差补偿技术[J].机械工程学报,2011,47(15):31-36. 被引量:37
  • 8Cho P J, Kim D I, Kim H G. Real-time static deflection compen- sation of an LCD glass-handling robot[J]. Mechatronics, 2007, 17(4/5): 191-198.
  • 9Nubiola A, Boney I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer- Integrated Manufacturing, 2013, 29(1): 236-245.
  • 10Santolaria, J, Conte J, Gines M. Laser tracker-based kinemat- ic parameter calibration of industrial robots by improved CPA method and active retroreflector[J]. International Journal of Ad- vanced Manufacturing Technology, 2013, 66(9-12): 2087-2106.

二级参考文献18

  • 1刘常杰,杨学友,邾继贵,叶声华.基于工业机器人白车身柔性坐标测量系统研究[J].光电子.激光,2006,17(2):207-210. 被引量:19
  • 2NEWMAN W S, BRIKHIMER C E, HORNING R J, et al. Calibration of a motoman P8 robot based on laser tracking[C]//IEEE International Conference on Robotics and Automation, April 24-28, 2000, San Francisco, California. San Francisco: IEEE, 2000: 3597-3602.
  • 3ALICI G, SHIRINZADEH B. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing[J]. Mechanism and Machine Theory, 2005, 40(8): 879-906.
  • 4ZHONG Xiaolin, LEWIS J, N-NAGY F. Inverse robot calibration using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1): 83-93.
  • 5SHAMMA J S, WHITNEY D E. A method for inverse robot calibration[J]. Transactions of the ASME, 1987, 109(1): 36-43.
  • 6IKITS M, HOLLERBACH J M. Kinematic calibration using a plane constraint[C]// Proceedings of the 1997 IEEE International Conference on Robotics and Automation, April 20-25, 1997, Albuquerque, New Mexico. NewYork: IEEE, 1997: 3191-3196.
  • 7ZHUANG Hanqi, ROTH Z S. A linear solution to the kinematic parameter identification of robot manipulators [C]//IEEE Transactions on Robotics and Automation, April, 1993, Sacramento, California. New Jersey: IEEE, 1993: 174-185.
  • 8HAYATI S A. Robot arm geometric link parameter estimation[C]//Proceedings of the 22nd IEEE Conference on Decision and Control, Dec. 14-16, 1983, San Antonio, Texas. NewYork: IEEE, 1983: 1477-1483.
  • 9WANG Wei, LOH R N K, ANQJR M H. Passive compliance of flexible link robots: (I) A new computation method[C]// Proceedings of the 8th International Conference on Advanced Robotics, July 7-9, 1997, Hyatt Regency, Monterey, California. New Jersey: IEEE, 1997: 209-214.
  • 10WANG Wei, LOH R N K, ANQJR M H. Passive compliance of flexible link robots: (II) Analysis and applieation [C]// Proceedings of the 8th International Conference on Advanced Robotics, July 7-9, 1997, Hyatt Regency, Monterey, California. New Jersey: IEEE, 1997: 215-220.

共引文献168

同被引文献192

引证文献30

二级引证文献201

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部