期刊文献+

基于格拉布斯准则的GMM背景建模方法 被引量:3

GMM Background Modeling Method Based on Grubbs Criterion
下载PDF
导出
摘要 利用混合高斯模型进行视频车辆检测.在背景建模阶段,易受初始时刻行驶车辆前景的干扰,造成背景模型包含大量前景信息,对后续车辆检测产生消极影响;故而将初始10帧各像素点处的灰度值看作时间域上的序列值,通过格拉布斯准则剔除代表前景信息的异常灰度值,进而对各像素点处代表背景信息的灰度值求取均值和方差,建立背景模型.实验结果表明该方法明显优于传统混合高斯模型背景建模,将其应用于基于混合高斯模型的视频车辆检测系统中,取得了良好的实验效果. When vehicle detection in video is practiced ,it is easy to be interfered by vehicle foreground of initial time in the background modeling phase ,w hich makes background model have a lot of information of foreground so as to have negative impact on vehicle detection .Therefore ,this paper considered the grey values of each pixel point in initial 10 frames as the sequence values in the time domain to eliminate the ab‐normal grey values that reflected foreground with Grubbs criterion .Then ,background mode was built via calculating mean and variance of grey values that reflected background for each pixel point .The experimen‐tal results showed that the methods put forward by this paper had better performance than GMM back‐ground modeling and was preferably used in video vehicle detection system .
出处 《徐州工程学院学报(自然科学版)》 CAS 2015年第2期15-18,70,共5页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 陕西省交通运输厅科研项目(12-26K) 国家山区公路工程技术研究中心开放基金项目(gsgzj-2011-08)
关键词 视频车辆检测 混合高斯模型 背景建模 格拉布斯准则 video vehicle detection system Gaussian mixture model background modeling Grubbs criterion
  • 相关文献

参考文献9

二级参考文献59

  • 1刘肃亮,周明全,耿国华.违章停车智能监控系统设计[J].计算机工程,2004,30(21):193-195. 被引量:12
  • 2佟守愚,程三伟,李江,付萍.基于视频技术的交通违章处理系统的设计与实现[J].计算机测量与控制,2005,13(10):1105-1107. 被引量:6
  • 3杨国亮,王志良,牟世堂,解仑,刘冀伟.一种改进的光流算法[J].计算机工程,2006,32(15):187-188. 被引量:27
  • 4黄卫 陈里得.智能运输系统(ITS)概述[M].北京:人民交通出版社,2001..
  • 5Ji X P,Wei Z Q,Feng Y W. Effective vehicle detection technique for traffic surveillance systems[J] Visual Comrnun Image Represent,2006,17 (3) :647 - 658.
  • 6Mckenna S. Tracking groups of people[J]. Computer Vision and Image Understanding, 2000,80 ( 1 ) : 42-56.
  • 7Wren C R, Azarbayejani A, Darrell T, et al. Pfinder:real-time tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :780-785.
  • 8Bogomolov Y, Dror G, Lapchev S, et al. Classification of moving targets based on motion and appearance [C]//British Machine Vision Conference, 2003:429- 438.
  • 9Rivlin E, Rudzsky M, Goldenberg R,et al. A realtime system for classification of moving objects[C] //IEEE Conference on Computer Vision and Pattern Recognition,2002:688-691.
  • 10Stauffer C, Grimson W. Adaptive background mixture models for real-time traeking[C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1999 : 246-252.

共引文献127

同被引文献20

  • 1GONZALEZ R C,WOOD R E. 数字图像处理[M].2 版. 北京: 电子工业出版社,2007:175.
  • 2CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts,and shadows in video streams[J]. Pat tern Analysis and Machine Intelligence, IEEE Transactions on,2003,25(10):1337-134Z.
  • 3YANG M T,LO K H,CHIANG C C,et al Moving cast shadow detection by exploiting multiple cues[J]. Image Process ing, IET, 2008,2 (2) : 95-104.
  • 4MCFEELY R,GLAVIN M,JONES E. Shadow identification for digital imagery using colour and texture cues[J]. Image Processing, IET, 2012,6 (2) : 148-159.
  • 5aPRATI A,MIKIC I,TRIVEDI M, et al. Detecting moving shadows: algorithms and evaluation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (7) : 918-923.
  • 6JOSHI A J,PAPANIKOLOPOULOS N P. Learning to detect moving shadows in dynamic environments[J]. Pattern Anal- ysis and Machine Intelligence, IEEE Transactions on, 2008,30 (11) : 2055-2063.
  • 7曾国安.用Excel求解多元一次方程组[J].中国信息技术教育,2008(8):85-86. 被引量:1
  • 8于明,陈曦,阎刚,于洋.交通视频中利用多特征抑制车辆阴影[J].控制工程,2013,20(3):408-410. 被引量:5
  • 9丁凤琴,张凯.直线旋转坐标联动控制加工旋转曲面凸轮的数控改造研究[J].制造业自动化,2014,36(18):79-81. 被引量:1
  • 10黎利辉.基于边缘特征的汽车运动阴影去除算法[J].西南师范大学学报(自然科学版),2014,39(11):90-95. 被引量:1

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部