期刊文献+

基于层叠模型细粒度情感要素抽取及倾向分析 被引量:10

Fine-Grained Emotional Elements Extraction and Affection Analysis Based on Cascaded Model
下载PDF
导出
摘要 针对商品评论中的细粒度情感要素抽取问题,提出基于条件随机场模型(CRFs)和支持向量机(SVM)的层叠模型.针对情感对象与情感词的识别,将评论的句法信息、语义信息等引入CRFs模型,进一步提高CRFs特征模板的鲁棒性.在SVM模型中,引入情感对象和情感词的深层词义及情感词的基本情感倾向等特征,改进传统的词包模型,对〈情感对象,情感词〉词对进行细粒度的情感分类判断,从而获得商品评论中的情感关键信息:(情感对象,情感词,情感倾向性)三元组.实验表明,文中的CRFs和SVM层叠模型可提高情感要素抽取与情感分类判断的准确性. For the fine-grained emotional elements extraction problem in product reviews, a cascaded model combining conditional random fields ( CRFs) and support vector machine ( SVM) is put forward. Aiming at the recognition of sentiment objects and emotional words, the review of syntactic and semantic informations are introduced into CRFs model to further improve the robustness of feature templates in CRFs. In SVM model, the features of deep semantic information of sentiment objects and emotional words and basic emotional orientation of emotional words are introduced to improve the traditional bag-of-words model. The sentiment of〈sentiment object, emotional word〉word pair is classified to acquire key information from product reviews, namely triples of ( sentiment object, sentiment word, sentiment trend) . Experimental results show that the proposed CRFs and SVM cascaded model efficiently improves the precision of emotional elements extraction and emotion classification.
作者 孙晓 唐陈意
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期513-520,共8页 Pattern Recognition and Artificial Intelligence
基金 国家863计划项目(No.2012AA011103) 国家自然科学基金项目(No.61203315) 安徽省科技攻关项目(No.1206c0805039)资助
关键词 情感计算 情感要素 语义角色 语法依存树 词义聚类 Affective Computing Emotional Element Semantic Role Syntax Dependency Tree Meaning Clustering
  • 相关文献

参考文献17

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules be-tween Sets of Items in Large Databases // Proc of the ACM SIGMODInternational Conference on Management of Data. Washington,USA, 1993: 207-216.
  • 2Liu B, Hu M Q, Cheng J S. Opinion Observer: Analyzing andComparing Opinions on the Web // Proc of the 14th InternationalConference on World Wide Web. Chiba, Japan, 2005 : 342-351.
  • 3Hu M Q, Liu B. Mining and Summarizing Customer Reviews //Proc of the 10th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. Seattle, USA, 2004 : 168-177.
  • 4Kim S M, Hovy E. Determining the Sentiment of Opinions // Procof the 20th International Conference on Computational Linguistics.Geneva, Switzerland, 2004 : 1367-1373.
  • 5朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 6刘群,李素建.基于知网的词汇语义相似度的计算//第三届汉语词汇语义学研讨会论文集.台北,2002: 59-76.
  • 7娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 8李钝,曹付元,曹元大,万月亮.基于短语模式的文本情感分类研究[J].计算机科学,2008,35(4):132-134. 被引量:35
  • 9史伟,王洪伟,何绍义.基于微博平台的公众情感分析[J].情报学报,2012,31(11):1171-1178. 被引量:13
  • 10Kim S M, Hovy E. Automatic Identification of Pro and Con Rea-sons in Online Reviews // Proc of the 21 st International Conferenceon Computational Linguistics and 44th Annual Meeting of the Asso-ciation for Computational Linguistics. Sydney, Australia, 2006 ;483-490.

二级参考文献101

共引文献470

同被引文献83

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部