期刊文献+

基于二维邻域保持判别嵌入的人脸识别 被引量:1

Face Recognition Based on Two-Dimensional Neighborhood Preserving Discriminant Embedding
下载PDF
导出
摘要 提出二维邻域保持判别嵌入(2DNPDE)算法,该算法是一种有监督的基于二维图像矩阵的特征提取算法.为表示样本的类内邻域结构和类间距离关系,分别构建类内邻接矩阵和类间相似度矩阵.2DNPDE所获得的投影空间不但使不同类数据点的低维嵌入相互分离,而且保留同类样本的邻域结构和不同类样本的距离关系.在ORL和AR人脸数据库上的实验表明,该算法具有更好的识别效果. Two-dimensional neighborhood preserving discriminant embedding ( 2 DNPDE ) is proposed in this paper. 2DNPDE is supervised feature extraction algorithm based on 2D image matrices. For representing the within-class neighborhood structure and the between-class distance relationship of samples, the within-class affinity matrix and the between-class similarity matrix are constructed respectively. The projection space obtained by 2 DNPDE not only makes the low dimensional embedding of data points from different classes far from each other, but also preserves the neighborhood structure of samples from the same class and the distance relationship of samples from the different classes. The experimental results on the ORL and AR face databases show that the proposed algorithm has better recognition performance.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期528-534,共7页 Pattern Recognition and Artificial Intelligence
关键词 人脸识别 二维邻域保持嵌入 特征提取 类内邻域结构 类间距离关系 Face Recognition Two-Dimensional Neighborhood Preserving Embedding Feature Extraction Within-Class Neighborhood Structure Between-Class Distance Relationship
  • 相关文献

参考文献18

  • 1刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 2Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cogni-tive Neuroscience,1991,3(1): 71-86.
  • 3Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.Fisherfaces : Recognition Using Class Specific Linear Projection.IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7) : 711-720.
  • 4Shawe-Taylor J,Cristianini N. Kernel Methods for Pattern Analysis.1st Edition. Cambridge, UK: Cambridge University Press, 2004.
  • 5Scholkopf B,Smola A,Muller K R. Nonlinear Component Analysisas a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319.
  • 6Yang J, Gao X M, Zhang D, et al. Kernel ICA: An AlternativeFormulation and Its Application to Face Recognition. Pattern Recog-nition, 2005, 38(10) : 1784-1787.
  • 7Yang M H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recog-nition Using Kernel Methods // Proc of the 5 th IEEE InternationalConference on Automatic Face and Gesture Recognition. Washing-ton, USA,2002: 215-220.
  • 8Pless R, Souvenir R. A Survey of Manifold Learning for Images. IP-SJ Trans on Computer Vision and Applications, 2009, 1(1): 83-94.
  • 9Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Lo-cally Linear Embedding. Science, 2000,290(5500) : 2323-2326.
  • 10Tenenbaum J B, de Silva V,Langford J C. A Global GeometricFramework for Nonlinear Dimensionality Reduction. Science,2000, 290(5500) : 2319-2323.

二级参考文献70

  • 1Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274.
  • 2Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58.
  • 3Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998.
  • 4Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77.
  • 5Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000.
  • 6Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese).
  • 7Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740.
  • 8Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966.
  • 9Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaee: Recognition using class special linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 10Zhao W, Chellappa R, Krishnaswamy A. Discriminant analysis of principal components for face recognition. In:Proceedings of International Conference on Automatic Face and Gesture Recognition, Japan: Nara, 1998. 336-341.

共引文献122

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部