期刊文献+

判别最小平方有序回归

Discriminative Least Squares Ordinal Regression
下载PDF
导出
摘要 有序回归是特殊的机器学习范式,其目标是利用数据间内在的序标号以划分模式.尽管众多算法相继提出,但经典的最小平方回归(LSR)尚未应用于有序回归场景.为此,文中采用累积标号编码和间隔扩大策略,在LSR基础上提出判别最小平方有序回归(DLSOR).DLSOR在对回归函数无需施加约束的前提下,仅通过改造标号实现有序信息的嵌入和类间间隔的扩大,从而确保DLSOR在与LSR具有相当模型复杂度的同时,既保证较高的分类精度,又获得较低的平均绝对误差.实验验证DLSOR在提升有序回归性能上的优越性. Ordinal regression is a special machine learning paradigm and its objective is to classify patterns by using a between-class natural order property between the labels. Although many algorithms are proposed, the classical least squares regression ( LSR) is not applied to the ordinal regression scenario. In this paper, a discriminative least squares ordinal regression ( DLSOR) is proposed by using the cumulative labels and the margin-enlarging technique. Without constraints imposed on the regression function, DLSOR can embed ordinal information and expand between-class margin only through the label transformation. Thus, a high classification accuracy and low mean absolute errors can be guaranteed with the premise that the model complexity of DLSOR is consistent with that of LSR. The experimental results demonstrate the superiority of the proposed method in improving the ordinal regression performance.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第6期535-541,共7页 Pattern Recognition and Artificial Intelligence
基金 江苏省自然科学基金项目(No.BK2011728) 教育部博士点基金项目(No.20133218110032) 江苏省研究生培养创新工程项目(No.CXLX13_159)资助
关键词 有序回归 最小平方回归( LSR) 累积标号 间隔扩大 Ordinal Regression, Least Squares Regression (LSR), Cumulative Label, Margin-Enlarging
  • 相关文献

参考文献22

  • 1Herbrich R, Graepel T, Obermayer K. Large Margin Rank Bounda-ries for Ordinal Regression // Bartiett P J, Scholkopf B, Schuur-mans D, et al. , eds. Advances in Large Margin Classifiers. Cam-bridge, USA: MIT Press, 2000: 115-132.
  • 2Frank E, Hall M. A Simple Approach to Ordinal Classification //Proc of the 12th European Conference on Machine Learning.Freiburg, Germany, 2001 : 145-156.
  • 3Waegeman W, Boullart L. An Ensemble of Weighted Support VectorMachines for Ordinal Regression. International Journal of ComputerSystems Science and Engineering, 2009 , 3(1): 47-51.
  • 4Chu W,Keerthi S S. New Approaches to Support Vector OrdinalRegression // Proc of the 22nd International Conference on MachineLearning. Bonn, Germany, 2005 : 145-152.
  • 5Kramer S, Widmer G, Pfahringer B,et al. Prediction of OrdinalClasses Using Regression Trees // Proc of the 12th InternationalSymposium on Methodologies for Intelligent Systems. Charlotte,USA, 2000 : 426-434.
  • 6Cardoso J S, da Costa J F P. Learning to Classify Ordinal Data: TheData Replication Method. Journal of Machine Learning Research,2007,8: 1393-1429.
  • 7Lin H T, Li L. Reduction from Cost-Sensitive Ordinal Ranking toWeighted Binary Classification. Neural Computation, 2012, 24(5): 1329-1367.
  • 8Approaches // Becker S,Thrun S,Obermayer K, eds. Advancesin Neural Information Processing Systems. Cambridge, USA : MITPress, 2002: 937-944.
  • 9Sun BY,Li J Y,Wu D D,ei al. Kernel Discriminant Learning forOrdinal Regression. IEEE Trans on Knowledge and Data Enginee-ring, 2010, 22(6) ; 906-910.
  • 10Liu Y, Liu Y,Chan K C C. Ordinal Regression via ManifoldLearning // Proc of the 25 th AAAI Conference on Artificial Intelli-gence. San Francisco, USA, 2011 : 398-403.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部