期刊文献+

采用EMD的管道泄漏声信号增强 被引量:34

Enhancement of leak signals using EMD in pipeline
下载PDF
导出
摘要 在管道泄漏检测中,采集信号中的噪声会影响泄漏检测的准确性和泄漏定位误差。已有的管道泄漏去噪方法依赖经验参数的设置,去噪效果受管道条件和环境影响大。本文提出使用不依赖经验参数的EMD用于管道泄漏声信号增强。现有的EMD去噪方法需要知道有用信号或者噪声的特征,不适用于特征随管道工程条件及环境变化较大的泄漏信号的去噪增强。提出改进的EMD信号增强方法,该方法不需要知道泄漏信号和噪声特征就可以提取与泄漏信号相关的IMF。在改进的EMD信号增强方法的效果分析中,信噪比提高可达16 d B。在大量实际工程管道泄漏信号处理中,使用改进的EMD信号增强方法之后得到的时延峰值更明显,漏点定位精度更高。 In the pipeline leak detection,noises in collected signals influence the accuracy of leak detection and the leak location error. Existing denoising methods depending on empirical parameters are easily affected by the pipeline condition and environment. EMD(empirical mode decomposition) is an adaptive signal decomposition method,which is independent of empirical parameters,and it is proposed to increase the SNR of leak signals of pipeline. Existing EMD denoising methods need to know the characteristics of useful signal and noises. However,characteristics of leak signals and noises are difficult to be predicted in the unknown pipeline,and existing EMD denoising methods can't be applied to the enhancement of leak signals in pipeline leak detection. An improved EMD signal enhancement method is propsed,in which the relevant IMF(intrinsic mode function) that contains leak signals can be extracted without knowing characteristics of leak signals and noises. In simulation analysis,the improved EMD signal enhancement method can increase the SNR of leak signals about 16 d B. In the processing of numerous practical pipeline leak signals,the peak of adaptive time delay wave is more obvious,and the accuracy of leak location is improved.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第6期1397-1405,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61174017) 重庆市科技攻关项目(2009AB2041 2010AA3001)资助
关键词 泄漏检测 经验参数 EMD IMF 信号增强 leak detection empirical parameters empirical mode decomposition(EMD) intrinsic mode function(IMF) signal en-hancement
  • 相关文献

参考文献16

  • 1KNAPP C,CARTER G C. The generalized correlationmethod for estimation of time delay [ J ] . IEEE Transac-tions on Acoustics, Speech, and Signal Processing,1976,24(4) : 320-327.
  • 2王锋,刘美全,孙钦蕾.被动探测中相关时延估计研究[J].国外电子测量技术,2014,33(2):61-64. 被引量:8
  • 3WEN Y M,LI P,YANG J, et al. Information processingin buried pipeline leak detection system [ C]. Proceedingsof International Conference on Information Acquisition,2004: 489493.
  • 4张悦,齐望东,刘鹏,威力.无线电干涉测距的性能分析[J].仪器仪表学报,2014,35(2):284-291. 被引量:4
  • 5姜洲,丁华平,沈庆宏.具有瞬时较大波动的信号降噪方法研究[J].电子测量技术,2015,38(3):116-119. 被引量:15
  • 6文玉梅,谢仁峰,杨进,李平,文静.管道泄漏检测中的噪声自适应抑制[J].仪器仪表学报,2012,33(10):2228-2233. 被引量:15
  • 7COLOMINAS M A, SCHLOTTHAUER G, TORRES ME. Improved complete ensemble EMD: A suitable toolfor biomedical signal processing [ J ] ? Biomedical SignalProcessing and Control, 2014, 14: 19-29.
  • 8苗晟,王威廉,姚绍文.Hilbert-Huang变换发展历程及其应用[J].电子测量与仪器学报,2014,28(8):812-818. 被引量:54
  • 9PENG J G, WANG W L,FANG M. Hilbert _ Huangtransform ( HHT) based analysis of signal characteristicsof vortex flowmeter in oscillatory flow [ J ]. Flow Measure-ment and Instrumentation, 2012,26(4) :37-45.
  • 10BOUDRAA A 0. EMD-based signal filtering[ J]. IEEETransactions on Instrumentation & Measurement,2007 ,56 (6) :2196-2202.

二级参考文献77

共引文献117

同被引文献315

引证文献34

二级引证文献223

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部