期刊文献+

计算流体力学在化学反应器模拟中的应用进展 被引量:5

Progress of chemical reactor simulation with computational fluid dynamics
原文传递
导出
摘要 计算流体力学(CFD)能够准确地描述流体流动、混合、传热规律,近年来逐渐开始耦合到化学反应中应用于化学工程领域,并表现出巨大潜力。本文综述了CFD在不同化学反应器中针对不同反应体系模拟的基本原理以及应用。相比于传统的面向理想反应器的反应动力学模拟和单纯面向流动传递的CFD模拟方法而言,采用CFD耦合化学反应动力学的方法同时考虑了传递过程和反应过程,能够对非理想化学反应器的操作特性(转化率、选择性、分子量及其分布等)进行模拟、分析与预测,在化工过程强化和化工产品控制方面优势明显。开发新的耦合数学模型和数值算法、考虑亚格子尺度的微观过程和采用直接数值模拟等方法,将是利用CFD深入研究非理想反应器特性的重要方向。 Computational fluid dynamics(CFD) which can describe fluid flow, mixing and heat transfer accurately has been gradually coupled with chemical reactions in recent years, and shows a great potential in the field of chemical engineering. This paper reviews the basic principles and applications of CFD simulation in different chemical reactors for various reaction systems. Compared with traditional reaction kinetics simulation for ideal reactors and CFD simulation method for flow transport process, CFD coupled with chemical reaction kinetics can take transport process and reaction into consideration simultaneously, thus simulating, analyzing and forecasting operating performance(conversion, selectivity, molecular weight and distribution, etc) of non-ideal chemical reactors. It exhibits obvious advantages in the intensification of chemical processes and the control of chemical products. Developing new coupling mathematical models and numerical algorithm, considering the micro processes in subgrid scale and adopting direct numerical simulation method, will be the important directions of further studies on the process simulation of non-ideal reactors with CFD.
出处 《计算机与应用化学》 CAS 2015年第6期641-645,共5页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(21276222) 国家高技术研究发展计划(863)资助项目(2012AA040305) 化学工程联合国家重点实验室开放课题资助(SKL-Ch E-13D01)
关键词 计算流体力学 化学反应器 数值模拟 微观混合 湍流 computational fluid dynamics chemical reactors numerical simulation micromixing turbulence
  • 相关文献

参考文献23

  • 1Wu B. Integration of mixing, heat transfer, and biochemical reaction kinetics in anaerobic methane fermentation. Biotech?nology and Bioengineering, 2012,109(11):2864-2874.
  • 2Read N K, Zhang S X, Ray W H. Simulations of a LDPE reactor using computational fluid dynamics. AIChE Journal, 1997,43(1): 104-117.
  • 3Molen J V D and Heerden C V. The effect of imperfect mixing on the initiator productivity in the high pressure radical polymerization of ethylene. Proc. of the 1 st Int. Symp on Chemical Reaction Engineering, 1972:92.
  • 4Villennaux J, Pons M and Blavier L. Comparison of partial segregation models for the determination of kinetic constants in a high pressure polyethylene reactor. ISCRE & Int Symp on Chemical Reaction Engineering,1984:553.
  • 5Zwietering T N. A backmixing model describing micromixing in single-phase continuous-flow systems. Chemical Engineering Science, 1984,39(12):1765-1778.
  • 6Smit L. The use of micromixing calculations in LDPE reactor modeling. 4th Int. Workshop on Polymer Reaction Engineering, 1992:77.
  • 7Zessin J., U. Engelmann, G Schmidt-Naake, H. J. Oelmann, and W. Pippel. Influence of Micromixing on Free Radical Polymerization. Int. Workshop on Polymer Reaction Engineering, 1992:67.
  • 8Ritchie B W, Tobgy A H. A three-environment micromixing model for chemical reactors with arbitrary separate feedstreams. Chemical Engineering Journal, 1979, 17(3): 173-182.
  • 9Han Y, Wang J, Gu X, et al. Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor. Chemical Engineering Science, 2012, 74:9-17.
  • 10Nagaki A, Togai M, Suga S, et al. Control of Extremely Fast Competitive Consecutive Reactions using Micromixing. Selective Friedel-Crafts aminoalkylation, Journal of the American Chemical Society, 2005,127(33):11666-11675.

同被引文献24

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部