期刊文献+

面向服务匹配问题的协同演化算法 被引量:4

Co-Evolutionary Algorithm for Web Service Matching
下载PDF
导出
摘要 服务匹配是服务发现的主要环节.目前,原子服务匹配过程主要存在服务匹配概念狭窄、匹配算法的时间复杂度较高及匹配方案的表示难以被智能优化算法处理等问题.针对上述问题,在原子服务匹配的基础上引入复合服务匹配、抽象复合服务匹配过程的适应度函数及约束条件,设计适用于智能优化算法处理的匹配方案的表示方法.同时,结合协同演化算法设计思路,提出基于粒子群和模拟退火的协同演化算法(PSO-SA),用以求解复合服务匹配.实验结果表明:与现有智能优化算法相比,PSO-SA可在有限迭代次数内获得精度较高的匹配结果,对不同维度的服务匹配问题具有较高的适应性,可用于提高服务发现结果的质量. Service matching is a principal process of Web services discovery. Nowadays, the narrow concept of the atomic Web service matching, the high time complexity of the current matching algorithm and the difficult expression of the Web service matching for the intelligent optimization algorithms become the main problems in Web service matching development. To solve the above problems, this article introduces the concept of the compound service matching by extending the concept of the atomic service matching, and abstracts the mathematical expression of the compound matching problem by the fitness function and restriction. The expression of the solution of the Web service matching for the intelligent optimization algorithm is also proposed. Based on the co-evolutionary idea of particle swarm optimization (PSO) and simulated annealing (SA), the study puts forward a co-evolutionary algorithm (PS0-SA) to the compound Web service matching problem. According to the experimental results, PSO-SA achieves better matching precision than other optimization algorithms within the limit iterations on various dimensional matching problems. Also, PSO-SA shows the adaptive ability to the compound service matching and improves the quality of result of Web services discovery.
出处 《软件学报》 EI CSCD 北大核心 2015年第7期1601-1614,共14页 Journal of Software
基金 中央高校基本科研业务费专项资金(BLX2014-27) 国家自然科学基金(60973075 61272186) 黑龙江省自然科学基金(F200937 F201110)
关键词 服务匹配 粒子群优化 模拟退火 协同演化 Web services matching PSO SA co-evolution
  • 相关文献

参考文献6

二级参考文献104

共引文献126

同被引文献42

  • 1Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NPcompleteness[M]. San Francisco: W. H. Freeman Eds, 1979.
  • 2Fujie T. An exact algorithm for the maximum leaf spanning tree problem[J]. Computers & Operations Research, 2003, 30(13): 1931- 1944.
  • 3Kratsch S, Lehre P K, Neumann F, et al. Fixed parameter evolutionary algorithms and maximum Leaf spanning tree A matter of mutation[C]/ Proceedings of Parallel Problem Solving from Nature-(PPSN X1), volume 6238 of LNCS, Springer Berlin/Heidelberg, 201 I: 204-213.
  • 4Lu Hsueh-I, Ravi R. The power of local optimization: Approximation algorithms for maximum leaf spanning tree [C]// Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, 1992: 533-542.
  • 5Lu Hsueh-I, Ravi R. The power of local optimizations: Approximation algorithms for maximum leaf spanning tree (DRAFI')* [R]. Technical Report CS--96-05, Brown University, 1996.
  • 6Lu Hsueh-I, Ravi R. A near-linear-time approximation algorithm for maximum-leaf spanning tree[R]. Technical Report CS-96-06, Brown University, 1996.
  • 7Lu Hsueh-I, Ravi R. Approximating maximum leaf spanning trees in almost linear time[J]. Journal of Algorithms, 1998, 9(1):132-141.
  • 8Roberto Solis-Oba. 2-approximation algorithm for finding a spanning tree with maximum number of leaves [C]//In algorithms, ESA, volume 1461 of LNCS, Springer, Berlin, 1998: 441-452.
  • 9Bonsma P, Zickfeld F. A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs[C]//In Proceedings of the 8th Symposium on Latin American Theoretical Infonnatics (LATIN), vol. 4957 of LNCS, Springer, 2008: 531-543.
  • 10Kleitman D J, West D B. Spanning trees with many leaves [J].SIAM Journal on Discrete Mathematics, 1991, 4(1):99-106.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部