期刊文献+

TRV介导的大豆基因瞬时沉默体系的建立 被引量:13

Establishment of TRV-mediated Transient Gene-Silencing System in Soybean
下载PDF
导出
摘要 【目的】病毒诱导的基因沉默(virus-induced gene silencing,VIGS)技术已在植物基因功能研究领域得到广泛应用。建立以TRV为载体介导的大豆基因瞬时沉默体系,为将烟草脆裂病毒(Tobacco rattle virus,TRV)介导的基因沉默技术在大豆与大豆花叶病毒(Soybean mosaic virus,SMV)互作体系中对大豆基因功能进行研究提供基础。【方法】从大豆品种冀豆7号(J7)叶片中特异性扩增八氢番茄红素脱氢酶基因(Gm PDS)的部分片段,并将该基因片段插入质粒p TRV﹕RNA2中;向J7的第一位真叶注射携带有TRV或TRV﹕Gm PDS的农杆菌,注射后对上部未接种病毒的叶片进行表型观察,并通过半定量RT-PCR检测Gm PDS的表达量。为探讨接种TRV是否影响大豆对SMV的抗性表现,在大豆第一片真叶上预接种TRV病毒后10 d,再分别接种SMV株系N3和SC-8,以单独接种N3或SC-8作为对照。待接种SMV后第5天观察未接种的上位叶表型并检测SMV的外壳蛋白基因CP。【结果】大豆叶片注射携带有TRV﹕Gm PDS的农杆菌后25 d,上部未接种病毒的叶片出现了白化现象,通过半定量RT-PCR分析,发生白化的植株中Gm PDS的表达量明显降低。在此基础上,向大豆叶片预注射携带有TRV的农杆菌后再接种SMV,SMV株系N3和SC-8与J7分别组成不亲和与亲和组合。发现J7第一片真叶上预接种TRV后再接种SMV株系N3,与单独接种N3对上位叶的影响在表型上表现一致,对未接种的上位叶片进行病毒外壳蛋白基因CP检测,发现J7单独接种N3以及预接种TRV后再接种N3的上位叶片上均未能检测到CP表达。而J7单独接种SMV株系SC-8,以及预接种TRV后再接种SC-8均在上位叶上能够检测到CP。说明在J7上预接种TRV不影响J7对SMV的抗性。在感病品种南农1138-2上也获得了相似结果。【结论】建立了以TRV为载体介导的大豆基因瞬时沉默体系,并证明在大豆上先接种TRV不改变大豆对SMV的抗性表现。 【Objective】Virus-induced gene silencing(VIGS) technology has been widely applied in the field of functional gene research in plants. Tobacco rattle virus-mediated gene silencing technology was used in the interaction between soybean and soybean mosaic virus(SMV) for gene function evaluation, and a TRV-mediated gene transient silence system in soybean was established.【Method】Soybean cv. Jidou 7(J7) was used as material, and specifically amplified part of the Gm PDS gene fragment from J7 leaves, and then was inserted into the plasmid p TRV: RNA2; The Agrobacterium carried with TRV or TRV:Gm PDS were injected into the first true leaves of J7. After that, the upper non-inoculated leaves were observed and Gm PDS gene's expression level was confirmed by semi-quantitative RT-PCR analysis. In order to investigate the effect of inoculation with TRV on the resistance of soybean to SMV infection, the first true leaves of soybean inoculated with TRV for 10 days, then were inoculated with SMV strain N3 or SC-8. The control treatments were conducted by inoculating N3 or SC-8 alone. At 5 days after inoculating SMV, the phenotypes of upper uninoculated leaves were observed and SMV coat protein CP was detected. 【Result】At 25 days after injected with Agrobacterium suspension carrying TRV: Gm PDS into the first true leaves, the upper uninoculated leaves showed whitening phenotype and expression level of Gm PDS was decreased significantly by semi-quantitative RT-PCR analysis. Based on this, soybean leaves injected with Agrobacterium suspension(carrying TRV) were then inoculated with SMV. J7 and SMV strains N3 and SC-8 were used to constitute incompatible and compatible combinations. Inoculated with TRV and then with SMV strains N3 or SC-8, the phenotype of upper uninoculated leaves were consistent with the upper leaves after inoculated with SMV alone. Leaves were taken for viral coat protein CP test. It was found that when inoculated with N3 alone, or pre-inoculated with TRV and then inoculated with N3, the coat protein CP was not detected on the upper leaves. If inoculated with SC-8 alone, or pre-inoculated with TRV and then inoculated with SC-8, the viral coat protein CP was detected on the uninoculated upper leaves. These results showed that the TRV had no influence on the performance of soybean resistance to SMV. The similar results were got on susceptible cv. Nannong 1138-2. 【Conclusion】The TRV-VIGS system in soybean was established in this experiment. The TRV has no influence on the performance of soybean resistance to SMV.
出处 《中国农业科学》 CAS CSCD 北大核心 2015年第12期2479-2486,共8页 Scientia Agricultura Sinica
基金 国家自然科学基金(30971706 31471421)
关键词 病毒诱导的基因沉默 大豆 烟草脆裂病毒 大豆花叶病毒 大豆八氢番茄红素脱氢酶基因 virus-induced gene silencing(VIGS) soybean tobacco rattle virus soybean mosaic virus soybean phytoene desaturase(Gm PDS)
  • 相关文献

参考文献25

  • 1Cui X Y, Chen X, Wang A M. Detection, understanding and control of soybean mosaic virus. Soybean Molecular Aspects of Breeding, 2011: 335-354.
  • 2Zhou L, He H L, Liu R F, Han Q, Shou H X, Liu B. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biology, 2014, 14: 154.
  • 3Li W L, Zhao Y S, Liu C J, Yao G B, Wu S S, Hou C Y, Zhang M C, Wang D M. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Reports, 2012, 31(5): 905-916.
  • 4Cheng K C C, Str?mvik M V. SoyXpress: A database for exploring the soybean transcriptome. BMC Genomics, 2008, 9: 368.
  • 5Burch-Smith T M, Anderson J C, Martin G B, Dinesh-Kumar S P. Application and advantages of virus-induced gene silencing for gene function studies in plants. The Plant Journal, 2004, 39: 734-746.
  • 6Ramegowda V, Mysore K S, Senthil-Kumar M. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Frontiers in Plant Science, 2014, 5: 323.
  • 7Bedoya L C, Martínez F, Orzáez D, Daròs J A. Visual tracking of plant virus infection and movement using a reporter MYB transcription factor that activates anthocyanin biosynthesis. Plant Physiology, 2012, 158: 1130-1138.
  • 8Bruun-Rasmussen M, Madsen C T, Jessing S, Albrechtse M. Stability of Barley stripe mosaic virus-induced gene silencing in barley. Molecular Plant-Microbe Interactions, 2007, 20: 1323-1331.
  • 9Zheng S J, Snoeren T A L, Hogewoning S W, Loon J J A, Dicke M. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the buterfly Pieris rapae. New Phytologist, 2010, 186: 733-745.
  • 10Fragkostefanakis S, Sedeek K E. M, Raad M, Zaki M S, Kalaitzis P. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato (Solanum lycopersicum). Plant Molecular Biology, 2014, 85: 459-471.

二级参考文献40

  • 1郭东全,智海剑,王延伟,李海朝,盖钧镒,杨华,李凯,白丽.大豆花叶病毒5个分离物的鉴定及外壳蛋白序列分析[J].大豆科学,2006,25(3):218-222. 被引量:5
  • 2黄大辉,张增艳,辛志勇.利用酵母双杂交系统研究植物与病毒蛋白相互作用的进展[J].植物遗传资源学报,2006,7(4):477-483. 被引量:9
  • 3黄振瑞,孟岩,高三基,许莉萍,郭晋隆.甘蔗黄叶病毒外壳蛋白基因原核表达研究[J].植物遗传资源学报,2007,8(1):7-10. 被引量:6
  • 4濮祖芹 曹琦 等.大豆花叶病毒的株系鉴定[J].植物保护学报,1982,9(1):15-20.
  • 5邓恩新 王文忠.一种简易的向植物薄叶片内注射溶液的装置[J].植物生理学通讯,1992,28(4):296-296.
  • 6Gardner M W, Kendrick J B. Soybean Mosaic Virus[ J ]. J Agric Res,1921,2(10) :111-114.
  • 7Oparka K J. Getting the message across: how do plant cells ex- change macromolecular complexes [ J ]. Trends Plant Sci, 2004,9 : 33-41.
  • 8Van Bel A J E. The phloem, a miracle of ingenuity [ J ]. Plant Cell Environ, 2003,26 : 125-149.
  • 9Collinge D B, Slusarenko A J. Plant gene expression in response to pathogens[ J]. Plant Mol Biol, 1987,9:389-410.
  • 10Allison A V, ShaHa T A. The ultrastrucure of local lesions induced by potato virus X : a sequence of cytological events in the course of infection [ J ]. Phytopath, 1974,64 : 784 -793.

共引文献5

同被引文献128

引证文献13

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部