期刊文献+

基于双正交小波变换QRS波检测方法研究与改进 被引量:3

QRS Wave Detection Method and Improvement Based on Biorthogonal Wavelet Transform
下载PDF
导出
摘要 心电图中QRS波是特征最明显的波形,是医学上诊断症状的重要依据,因此QRS波的正确识别成为心电检测的首要问题。由于心电信号是mV级的微弱信号,易受各种干扰影响;同时,目前常用的小波变换识别QRS波方法,计算量大,对系统要求高。针对这些问题,首先,提出使用双正交B样条小波基对心电信号进行处理,并通过在各尺度波形上检测极大值取代模极大值对的方式,搜索R波;然后,使用MIT-BIH心律失常数据库验证算法效果,并针对验证结果对原始算法进行检测策略的优化,改用自适应阈值的检测方式;同时,引进对部分可疑点搜索模极大值对的检查方法,减少假阳性的情况。算法经MIT-BIH验证,得到98.9%的准确率。 Among ECG signal,QRS wave is the most obvious which is always an important foundation of symptoms diagnosis.So how to detect it effectively and accurately becomes a primary issue of diagnosis of electrocardiogram.Because ECG signal has a small amplitude and is susceptible to noise interference.At the same time,recently the common QRS detector based on wavelet transform has a large computation and a high requirement for system.According to these problems.Firstly,propose using biorthogonal wavelet transform raw electrocardiogram signal in order to reduce noise interference.Then,through detecting maxima feature points of wave signal under each scale,algorithm will find R wave instead of detecting modulus maxima pairs.In the further step,use MIT-BIH electrocardiogram database to verify the method.Regarding these problems in the verification result,propose optimization detection strategies,and adaptive threshold detection take the place of fixed threshold detection.Besides that,introduce some error remedy method.That is to find the module maxima pairs as to those doubtful feature points.This method can effectively locate the position of R wave and the recognition accuracy turns out to be 98.9%,better than some other traditional methods.
出处 《机电一体化》 2014年第5期21-25,61,共6页 Mechatronics
关键词 心电信号 双正交小波变换 R波检测 自适应阈值 ECG signal biorthogonal wavelet transform R wave detection adaptive threshold
  • 相关文献

参考文献8

  • 1PAN J, TOMPKINS W J. A real-time QRS detection algo- rithm [ J ]. Biomedical Engineering, IEEE Transactions on, 1985 (3) : 230-236.
  • 2李向军.一种基于经验模式分解的心电QRS波检测方法[J].电子科技大学学报,2007,36(4):795-797. 被引量:7
  • 3ZIDELMAL Z, AMIROU A, ADNANE M, et al. QRS de- tection based on wavelet coefficients[ J]. Computer methods and programs in biomedicine, 2012, 107(3) : 490-496.
  • 4LIU S H, CHENG D C, LIN C M. Arrhythmia Identifica- tion with Two-Lead Electrocardiograms Using Artificial Neu- ral Networks and Support Vector Machines for a Portable ECG Monitor System [ J ]. Sensors, 2013, 13 ( 1 ) : 813 - 828.
  • 5ZHENG XIUYU, LI ZHEN, SHEN LINLIN, et al. Detec- tion of QRS Complexes Based on Biorthogonal Spline Wavelet [J]. IEEE Information Science and Engineering, 2008, 2008 (2) : 502 - 506.
  • 6SARITHA C, SUKANYA V , NARASIMHA MURTHY Y. ECG Signal Analysis Using Wavelet Transforms [ J]. Bulgarian Journal of Physies, 2008 ( 35 ) :68 - 77.
  • 7王超文,吕扬生,黄玉玺.用于ECG信号检测与重建的双正交样条小波滤波器[J].北京生物医学工程,2001,20(1):25-28. 被引量:18
  • 8MOODY G B, MARK R G. The impact of the MIT-BIH Arrhythmia Database [ J]. IEEE Eng in Med and Biol, 2001, 20(3) :45-50.

二级参考文献9

  • 1李立霞,王文博,王德隽.子波变换去噪的一种新算法[J].信号处理,1996,12(3):261-266. 被引量:20
  • 2DASKALOV I K,CHRISTOV I I.Electrocardiogram signal preprocessing for automatic detection of QRS boundaries[J].Medical Engineering and Physics,1999,21:37-44.
  • 3TOMPKINS W J.Biomedical digital signal proces-sing[M].Englewood Cliffs,NJ:Prentice Hall,1993.
  • 4LI Cui-wei,ZHENG Chong-xun,YUAN Chao-wei.Detection of ECG characteristic points using wavelet transforms[J].IEEE Trans.on BME,1995,42(1):21-28.
  • 5AFONSO V X,TOMPKINS W J.ECG beat detection using filter banks[J].IEEE Trans.BME,1999,46(2):192-202.
  • 6HUANG N E,SHEN Zheng,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc of the Royal Society of London,1998,454(A):903-995.
  • 7CH L.Application of the empirical mode decompositionHilbert spectrum method to identify near-fault groundmotion characteristics and structural responses[J].Bulletin of the Seismological Society of America,2001,91:1339-1357.
  • 8ECHEVERRIA J C.Application of empirical mode decomposition to heart rate variability analysis[J].Medical & Biological Engineering & Computing,2001,39:471-479.
  • 9胡劲松,杨世锡,周方洁,吴昭同.旋转机械振动信号基于EMD的HT和Winger分布时频分析比较[J].汽轮机技术,2003,45(5):307-309. 被引量:6

共引文献22

同被引文献50

  • 1KaergaardK, Jensen SH, Puthusserypady S. A comprehensiveperformance analysis of EEMD-BLMS and DWT-NN hybridalgorithms for ECG denoising[J]. Biomed Sign Proc Contr, 2016,25: 178-187.
  • 2YochumM, Renaud C, Jacquir S. Automatic detection of P, QRSand T patterns in 12 leads ECG signal based on CWT[J]. BiomedSign Proc Contr, 2016, 25: 46-52.
  • 3PadhyS, Sharma LN, Dandapat S. Multilead ECG datacompression using SVD in multiresolution domain[J]. Biomed SignProc Contr, 2015, 23: 10-18.
  • 4GrossiG, Lanzarotti R, Lin J. High-rate compression of ECGsignals by an accuracy-driven sparsity model relying on naturalbasis[J]. Digit Sign Proc, 2015, 45: 96-106.
  • 5EdwardJS, Ramu P, Swaminathan R. Imperceptibility - robustnesstradeoff studies for ECG steganography using continuous antcolony optimization[J]. Expert Syst Appl, 2015, 49: 123-135.
  • 6Kumar R, Kumar A, Singh GK. Hybrid method based on singularvalue decomposition and embedded zero tree wavelet technique forECG signal compression.[J]. Comput Meth Prog Biomed, 2016.
  • 7TawficI, Kayhan S. Compressed sensing of ECG signal forwireless system with new fast iterative method[J]. Comput MethProg Biomed, 2015, 122(3): 437-449.
  • 8SharmaL N. Coding ECG beats using multiscale compressedsensing based processing[J]. Comput Electr Eng, 2015, 45(C): 211-221.
  • 9Liu T, Si Y, Wen D, et al. Dictionary learning for VQ featureextraction in ECG beats classification[J]. Expert Syst Appl, 2016,53: 129-137.
  • 10Fatin A, Naomie S, Arief R, et all. Arrhythmia recognition andclassification using combined linear and nonlinear features of ECGsignals[J]. Comput Meth Prog Biomed, 2016, 127: 52-63.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部