期刊文献+

考虑壁面影响的矩形裂缝通道中的颗粒沉降

Research on particle settling in rectangular ducts under effect of walls
下载PDF
导出
摘要 为了表征颗粒在矩形裂缝通道中沉降时壁面对沉降速度的影响,基于人工神经网络(ANN)提出壁面因子预测方法,提取影响颗粒沉降速度的7个参数(ρf,ρp,d,d/a,a/b,K和n)作为特征值,借助Machac的70组试验数据对模型进行训练和预测,并将人工神经网络预测结果与Miyamura公式和刘马林公式计算结果进行对比分析.结果表明:人工神经网络模型具有较高的精度,90%的预测结果误差小于7.5%.与Miyamura公式和刘马林公式相比,人工神经网络模型不但在处理平行板模型和矩形模型时有较高的工程精度,而且具有更广泛的适用范围,能够满足更加复杂的工程需要. In order to characterize wall effect of rectangular ducts on particle settling, a prediction method of wall factor was presented using Artificial Neural Network (ANN). Extracted pf, pp, d, d/a, a/b, K and n as feature parameters, which substantially affect particle settling velocity. Culled 70 data of Machac's paper to train and test the models, and compared predicted results of ANN with the calculated results of Miyamura correlation and Liu Malin correlation. The results show that, the accu- rate of ANN predicted results is great, the error is less than 7.5% for 90% calculated results. Compa- ring to Miyamura correlation and Liu Malin correlations, the ANN model has high engineering accuracy in parallel plate and rectangular ducts, and the application range of ANN has broader scope of applica- tion, and can meet complex engineering needs.
出处 《排灌机械工程学报》 EI 北大核心 2014年第12期1074-1078,共5页 Journal of Drainage and Irrigation Machinery Engineering
基金 长江学者和创新团队发展计划项目(IRT1294)
关键词 矩形流道 壁面影响 颗粒沉降 人工神经网络 Miyamura公式 刘马林公式 rectangular ducts wall effects particle settling Artificial Neural Network Miyamura correlation Liu Malin correlation
  • 相关文献

参考文献3

二级参考文献29

  • 1邵雪明,刘杨,余钊圣.不同大小粒子之间相互作用的直接数值模拟[J].应用数学和力学,2005,26(3):372-378. 被引量:8
  • 2王叶龙.相互碰撞的圆粒子在竖直通道中沉降的数值研究[J].应用数学和力学,2006,27(7):859-866. 被引量:5
  • 3王宝和,王喜忠.计算球形颗粒自由沉降速度的一种新方法[J].粉体技术,1996,2(2):30-39. 被引量:21
  • 4Singh P, Joseph D D, Hesla T I, Glowinski R, Pan T W. Distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows [J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 91(2): 155-188.
  • 5Vasseur P, Cox R G. The lateral migration of a spherical particles sedimenting in a stagnant bounded fluid[J]. Journal of Fluid Mechanics, 1977, 80: 551-591.
  • 6Miyamura A, Iwasaki S, Ishii T. Experimental wall correction factors of singile solid spheres in triangular and square cylinders, and parellel plates [ J ]. International Journal of Multiphase Flow, 1981,7(1): 41.
  • 7Vanroyen C, Omari A, Toutain J, Reungoat D. Interactions between hard spheres sedimenting at low Reynolds number[J]. European Journal of Mechanics, B/Fluids, 2005, 24( 5 ) : 586-595.
  • 8Shinbrot T. The brazil nut effect-in reverse[J]. Nature, 2004, 429(6990) : 352-353.
  • 9Mobius M E, Lauderdale B E, Nagel S R, Jaeger H M. Size separation of granular particles [J]. Nature, 2001,414(6861) : 270.
  • 10Sun R, Chwang A T. Interactions between two touching spherical particles in sedimentation [J]. Physical Review E,2007, 76(4) : 045315.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部