期刊文献+

一种基于鲁棒残差生成器的故障估计方法 被引量:2

A Fault Estimation Method Based on Robust Residual Generators
下载PDF
导出
摘要 针对具有加性执行器或元部件故障的线性系统,在独立故障的个数大于独立测量个数的情况下,提出了一种基于鲁棒残差生成器的故障估计方法.该故障估计方法是基于鲁棒残差生成器实现的,不需要额外设计动态的故障估计器.故障估计的实现需要:设计编码集;基于编码集设计鲁棒残差生成器;利用编码集和鲁棒残差生成器的输出实现故障分离和故障的渐近估计.给出了本方法的适用的充分条件,并证明了故障估计误差的渐近收敛性.最后,针对具有加性执行器故障的线性系统,基于几何方法设计鲁棒残差生成器,并进行了故障检测、故障分离和故障估计的仿真.仿真结果验证了本故障估计方法的有效性. This paper proposed a fault estimation method based on robust residual generators for a linear system. A system with additive actuator or component faults was considered in the case where the number of the independent faults was larger than that of the independent measurements. This method was achieved based on robust residual generators and there was no need to design extra fault estimators. In this method, fault estimation was achieved via three steps. First, coding sets, which describe the sensitivity relationship between faults and generators, are designed. Second, a bank of robust residual generators are designed ac- cording to the coding sets. Finally, fault estimation is achieved by using the result of fault isolation and the output of robust residual generators. A sufficient condition on the application of the method was given and the asymptotic convergence property of the estimation error by using the method was proved. Simulation results demonstrate the effectiveness of the method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第6期768-774,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(61210012 61290324 61490701) 清华大学自主科研青年基金资助
关键词 编码集 鲁棒残差生成器 故障分离 故障估计 coding sets robust residual generators fault isolation fault estimation
  • 相关文献

参考文献10

  • 1周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:308
  • 2Ding S X. Model-based fault diagnosis techniques: design schemes, algorithms and tools [M]. 2nd. London: Springer, 2013: 1-9.
  • 3Sari A H A. Data-driven design of fault diagnosis systems: nonlinear multimode processes[M]. Fach- medien Wiesbaden. NY: Springer, 2014: 11-30.
  • 4Qin L, He X, Zhou D H. A survey of fault diagnosis for swarm systems[J]. Systems Science & Control Engineering: An Open Access Journal, 2014, 2 (1) : 13-23.
  • 5Ge W, Fang C ZH. Detection of faulty components via robust observation [J]. International Journal of Control, 1988, 47(2): 581-599.
  • 6Chen J, Patton R J. Robust model-based fault diag- nosis for dynamic systems[M]. US: Springer, 1999: 65-108.
  • 7Meskin N, Khorasani K. Actuator fault detection and isolation for a network of unmanned vehicles[J]. Au- tomatic Control, IEEE Transactions on, 2009, 54(4) : 835-840.
  • 8Hou M, Muller P C. Design of observers for linear systems with unknown inputs[J]. Automatic Control, IEEE Transactions on, 1992, 37(6): 871-875.
  • 9Hamayun M T, Edwards C, Alwi H. A fault toler- ant control allocation scheme with output integral sliding modes[J]. Aatomatica, 2013, 49 (6) : 1830- 1837.
  • 10Zhu F. State estimation and unknown input recon- struction via both reduced-order and high-order slid- ing mode observers[J]. Journal of Process Control, 2012, 22(1): 296-302.

二级参考文献117

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献307

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部