期刊文献+

Identification of LPV Models with Non-uniformly Spaced Operating Points by Using Asymmetric Gaussian Weights 被引量:1

采用非对称高斯函数非均匀选取典型工作点的线性参数变化模型辨识方法(英文)
下载PDF
导出
摘要 In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operating points with uniform spacing and more flexibility is achieved. To verify the effectiveness of the proposed approach, several weighting functions, including linear, Gaussian and asymmetric Gaussian weighting functions, are evaluated and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the oroposed aonroach nrovides more satisfactory aonroximation. In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input–output multi-model structure. It is not required to select operating points with uniform spacing and more flexibility is achieved. To verify the effectiveness of the proposed approach, several weighting functions, including linear, Gaussian and asymmetric Gaussian weighting functions, are evaluated and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the proposed approach provides more satisfactory approximation.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期795-798,共4页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(21076179,61104008) National Basic Research Program of China(2012CB720500)
关键词 IDENTIFICATION Multi-model linear parameter varying system Asymmetric Gaussian weight Continuous stirred tank reactor 模型识别 高斯和 非对称 非均匀 线性参数变化系统 权重 操作 加权函数
  • 相关文献

参考文献15

  • 1Y. Zhao, B. Huang, H. Su, J. Chu, Prediction error method for identification of LPV models,J. Process Control 22 (1) (2012) 180-193.
  • 2T. Proll, M.N. Karim, Model-predictive pH control using real time NARX approach. AIChEJ. 2 (40) (1994) 269-282.
  • 3S. Piche, B. Sayyar-Rodsari, D. Johnson, M. Gerules, Nonlinear model predictive con- trol using neural networks. IEEE Control. 5yst. Mag 3 (20) (2000) 53-62.
  • 4R.K. Person, M. Pottmann, Gray-box identification of block-oriented nonlinear models,J. Process Control 10 (4) (2000): 301-315.
  • 5V. Laurain, M. Cilson, IL Toth. H. Gamier, Refined instrumental variable methods for identification for LPV Box-Jenkins models, Automafica 46 (2010) 959-967.
  • 6J. Shamma. M, Athans. Guaranteed properties of gain scheduled control for linear parameter varying plants, Automarica 27 (1991) 559-564.
  • 7V. Verdult, M. Verhaegen, Subspace identification of multivariable linear parameter- varying systems, Automatica 38 (5) (2002) 805-814.
  • 8B. Bamieh, k Giarre, Identification of linear parameter varying models, Int. J. Robust Nonlinear Control 12 ( 2002 ) 841-853.
  • 9J.Y. Shin, Worst-case analysis and linear parameter-varying gain-scheduled control of aerospace systems, (Ph.D. thesis) University of Minnesota, Minneapolis, USA, 2000.
  • 10Y.C Zhu, Z. Xu, A method of LPV model identification for control, Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008.

同被引文献17

  • 1Yu Zhao, Huang Biao, Su Hongye, Chu Jian. Prediction error method for identification of LPV models [J]. Journal of Process Control, 2012, 22 (1): 180-193.
  • 2Shamma Jeff S, Michael Athans. Analysis of gain scheduled control for nonlinear plants [J]. Automatic Control, IEEE Transactions on,1990,35(8):898-907.
  • 3Previdi F, Lovera M. Identification of a class of non-linear parametrically varying models [J]. International Journal of Adaptive Control and Signal Processing, 2003, 17 (1): 33-50.
  • 4Verdult Vincent, Michel Verhaegen. Subspace identification of multivariable linear parameter-varying systems [J]. Automatica, 2002, 38 (5): 805-814.
  • 5T6th Roland, Peter S C Heuberger, Paul M J Van den Hof. Asymptotically optimal orthonormal basis functions for LPV system identification [J]. Automatica, 2009, 45 (6): 1359-1370.
  • 6Zhu C, Xu Z H. A method of LPV model identification for control//Proceedings of 17th IFAC World Congress [C]. Seoul, Korea, 2008.
  • 7T6th Roland, Vincent Laurain, Wei Xing Zheng, Kameshwar Poolla. Model structure learning: a support vector machine approach for LPV linear-regression models//50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) [C]. 2011: 3 I92-3197.
  • 8Suykens Johan A K, Joos Vandewalle. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9 (3): 293-300.
  • 9Wang Haifeng, Hu Dejin. Comparison of SVM and LS-SVM for regression//International Conference on Neural Networks and Brain. ICNN&B'05 [C]. 2005:279-283.
  • 10Davis Lawrence. Handbook of Genetic Algorithms[M]. New York: Van Nostrand Reinhold, 1991.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部