期刊文献+

简化的双线性法求Lax型7阶KdV方程的多孤子解

A Simplied Bilinear Method for Solving Seventh Order KdV Equations of the Lax Type
下载PDF
导出
摘要 应用简化的双线性方法研究由Lax导出的7阶KdV方程.通过一些辅助函数的特殊表达式作为解的假设,利用数学软件计算获得了该方程的两孤子解和三孤子解,并给出两孤子解和三孤子解的三维图和二维图,直观地显示了这两种孤子解的动力学行为,同时也体现了简化的双线性方法在解可积方程中的有效性. Using a simplified bilinear method ,we study the seventh order KdV equation given by Lax .By some special auxiliary functions and employing a mathematical software ,two-soliton solutions and threesoliton solutions of this equation are obtained ,The 3D and 2D graphs of two-soliton solutions and threesoliton solutions are given ,and the properties of these multi-soliton solutions can be directly perceived through the senses .It show s that the simplified bilinear method is very valid to solve integrable equations .
作者 张金华 李薇
机构地区 红河学院数学系
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第9期81-87,共7页 Journal of Southwest University(Natural Science Edition)
基金 云南省自然科学基金资助项目(2013FZ116)
关键词 简化的双线性方法 Lax型7阶KdV方程 广田法 多孤子解 simplified bilinear method seventh order KdV equation Hirota method multi-soliton solu-tion
  • 相关文献

参考文献15

  • 1DARBOUX G. Lecons Sur la Theorie Generals Des Surfaces et les Application Geometriques du Calcul Infinitesimal. Deuxiem Partie . Paris: Gauthier-Villars et ills, 1889.
  • 2GU C H, HUH S, ZHOU Z X. Darboux Transformation in Soliton Theory and Its Geometric Applications[M].上海:上海科学技术出版社,1999.
  • 3WAHLQUIST H D, ESTABROOK F B. Backlund Transformation for Solutions of the Korteweg-de Vries Equation [J]. Physical Review Letters, 1973, 31(23) 1386-1390.
  • 4GU C H, ZHOU Z X. On the Darboux Matrices of Backlund Transformations for AKNS Systems [J]. Letters in Mathe- matical Physics, 1987, 13(a): 179-187.
  • 5ZAKHAROV V E. The Inverse Scattering Method [J]. Solitons: Topics in Current Physics, 1980, 17: 243-285.
  • 6ABLOWITZ M J, CLARKSON P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering . Cambridge: Cambridge University Press, 1991.
  • 7HIROTA R. Direct Methods in Soliton Theory [J]. Topics in Current Physics, 1980, 17: 157-176.
  • 8LI Z D, LI Q Y, HU X H, et al. Hirota Method for the Nonlinear SchrtSdinger Equation with an Arbitrary Linear Time- Dependent Potential [J]. Annals of Physics, 2007, 322(11): 2545-2553.
  • 9ZHANG J H. Using the Simplified Hirota's Method to Investigate Multi-Soliton Solutions of the Fifth-Order KdV Equa- tion [J]. International Mathematical Forum, 2012, 7(19): 917-924.
  • 10张金华,丁玉敏.一族非线性色散偏微分方程的指数函数型和三角函数型精确解[J].西南大学学报(自然科学版),2012,34(1):28-33. 被引量:2

二级参考文献24

  • 1RUI Wei-guo, HE Bin, LONG Yao, et al. The Integral Bifurcation Method and Its Application for Solving a Family of Third-Order Dispersive Pdes [J]. Nonlinear Analysis, 2008, 69(4): 1256-1267.
  • 2DEGASPERIS A, HOLM D D, HONE A N W. A New Integrable Equation with Peakon Solutions [J]. Theoretical and Mathematical Physics, 2002, 133(2): 1463-1474.
  • 3CAMASSA R, HOLM D D. An Integrable Shallow Water Equation with Peaked Solitons[J]. Physics Review Letters, 1993, 71(11):1661-1664.
  • 4CHEN Can, TANG Ming ying. A New Type of Bounded Waves for Degasperis-Procesi Equation [J]. Chaos, Solitons and Fractals, 2006, 27(3): 698-704.
  • 5GIUSEPPE M C, KENNETH H K. On the Well-Posedness of the Degasperis-Procesi Equation [J]. Journal of Func- tional Analysis, 2006, 233(1): 60-91.
  • 6DAI Hui-hui. Model Equations for Nonlinear Dispersive Waves in a Compressible Mooney-Rivlin Rod[J]. Acta Mechan- ical, 1998, 127(1 -4): 193-207.
  • 7CONSTANTIN A, STRAUSS W A. Stability of a Class of Solitary Waves in Compressible Elastic Rod [J]. Physics Letters A, 2000, 270(3-4): 140-148.
  • 8LENELLS J. Traveling Waves In Compressible Elastic Rods[J].Discrete and Continuous Dynamical Systems, 2006, 6(1): 151-167.
  • 9ADRIAN C, DAVID L. The Hydrodynamical Relevance of the Camassa Holm and Degasperis Procesi Equations[J].Archive for Rational Mechanics and Analysis, 2009, 192(1): 165-186.
  • 10PARKES E J, VAKHNENKO V O. Explicit Solutions of the Camassa-Holm Equation[J]. Chaos, Solitons and Frac- tals, 2005, 26(5): 1309-1316.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部