期刊文献+

有限交换群的直积分解 被引量:7

Direct Product of Finite Abelian Groups
下载PDF
导出
摘要 已知有限交换群的最高阶元生成的循环群是其直积因子.主要得到了:有限交换群的最低阶生成元生成的子群也是其直积因子.即设G是交换群,x是群G的最低阶生成元,则存在子群G1≤G,使得G=〈x〉×G1. In a finite abelian group ,the cyclic subgroup generated by a maximal order element is its direct product .Here ,we show that the subgroup generated by a generated minimal order element is also a direct product ,that is ,let G be an abelian group and x a generated element of minimal order in G ,then there exists G1 ≤G such that G=× G1 .
作者 张钰 吕恒
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期61-64,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11271301 11471226)
关键词 有限交换群 直积 交换p群 finite abelian group direct product abelian p-group
  • 相关文献

参考文献5

  • 1ROBINSON D J S. A Course in the Theory of Groups [M]. New York: Springer-Verlag, 1980.
  • 2薛海波,吕恒.含有CC-子群的局部有限群[J].西南师范大学学报:自然科学版,2012,37(12):10 — 12.
  • 3LV Heng, ZHOU Wei, GUO Xiu-yun. On Groups with a CC(n)-Subgroup [J]. Communications in Algebra, 2013, 41(3): 1182-1188.
  • 4徐明曜.有限群导引[M].北京:科学出版社,2001.
  • 5HUPPERT B, BLACKBURN N. Finite Groups [M]. New York: Springer-Verlag, 1967.

共引文献36

同被引文献25

  • 1施武杰,杨文泽.A5的一个新刻划与有限质元群[J].西南师范学院学报:自然科学版,1984,9(1):36-40.
  • 2TARNARUEANU M. Finite Groups Determined by an Inequality of Order of Their Elements [J]. Publ Math Debrecen, 2012, 80(3--4): 457--463.
  • 3ROBINSON D J S. A Course in the Theory of Groups [M]. 2 th ed. New York: Springer-Verlag, 1980.
  • 4BERKOVICH Y. Groups of Prime Power Order [M]. Berlin.. Walter de Gruyter, 2008.
  • 5HALL M. The Theory of Groups [M]. New-York.. Macmillan, 1980.
  • 6MILLER O A, MORENO H C. Non-Abelian Groups in Which Every Subgroups is Abelian [-J~. Trans Amer Math Soc, 1903(4) : 398-404.
  • 7LI Shi-rong, ZHAO Xu-bo. Finite Groups with Few Non-Cyclic Subgroups [-J~. Journal of Group Theory, 2007, 10: 225-233.
  • 8MENG Wei, LU Jia-kuan, LI Shi-rong. Finite Groups with Few Non-Cyclic Subgroups II EJ~. Algebra Colloquium, 2013, 20(1): 81-88.
  • 9徐明曜.有限群导引:上册[M].2版.北京:科学出版社,2001.
  • 10CSASZAR A. Generalized Topology, Generalized Continuity [J]. Acta Math Hungar, 2002, 96(4): 351-357.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部