摘要
已知有限交换群的最高阶元生成的循环群是其直积因子.主要得到了:有限交换群的最低阶生成元生成的子群也是其直积因子.即设G是交换群,x是群G的最低阶生成元,则存在子群G1≤G,使得G=〈x〉×G1.
In a finite abelian group ,the cyclic subgroup generated by a maximal order element is its direct product .Here ,we show that the subgroup generated by a generated minimal order element is also a direct product ,that is ,let G be an abelian group and x a generated element of minimal order in G ,then there exists G1 ≤G such that G=× G1 .
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第12期61-64,共4页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金资助项目(11271301
11471226)
关键词
有限交换群
直积
交换p群
finite abelian group
direct product
abelian p-group