期刊文献+

拓展Bose-Hubbard模型的有限系统密度矩阵重整化群算法 被引量:2

FS-DMRG for one-dimensional extended Bose-Hubbard model
下载PDF
导出
摘要 运用有限系统密度矩阵重整化群算法(FS-DMRG),研究拓展Bose-Hubbard模型(即在标准BoseHubbard模型的基础上加入最近邻格点间的粒子相互排斥作用V)发生相变的特征。通过计算系统的局域粒子数密度、单粒子能隙以及压缩系数,分析了系统在不同状态下的特征,得到了不同于标准Bose-Hubbard模型的新量子态——Charge Density Wave(CDW)态。通过分析产生特殊粒子分布方式的原因及其物理性质,得出了发生相变的临界条件。 The zero-temperature phase transition of the one-dimensional Bose-Hubbard mod- el with nearest-neighbor interaction is investigated using the finite size density matrix tenor- realization group method(FS-DMRG). By calculating the energy and associated eigenstate of the system's ground state with certain parameters, the local density, chemical potential and the compressibility are obtained, from which different phases, i.e. superfluid(SF), Mott in- sulator(MI) and the charge density wave(CDW), can be characterized. In addition, from the phase diagram, the critical conditions of transitions gre gotten from MI to SF and CDW to SF. All these results obtained are more accurate than those of previous researches.
出处 《长沙理工大学学报(自然科学版)》 CAS 2015年第2期78-82,共5页 Journal of Changsha University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(11274390)
关键词 拓展Bose-Hubbard模型 FS-DMRG算法 CDW态 extended Bose-Hubbard model FS-DMRG method CDW phase
  • 相关文献

参考文献14

  • 1D Jaksch, P Zoller. The cold atom hubbard toolbox[J].Annals of Physics,2005(315) :52-79.
  • 2Jakub Zakrzewski.Mean-field dynamics of the super- fluid-insulator phase transition in a gas of ultraeold atoms[J].Phys Rev A,2005(71) :043601.
  • 3Stefan Wessel, Fabien Alet, Matthias Troyer. Quan- tum monte carlo simulations of confined bosonic at- oms in optical lattices[J]. Phys Rev A, 2004 (70) : 053615.
  • 4L Mathey,D-W Wang.Phase diagrams of one-dimen- sional bose-fermi mixtures of ultracold atoms[J]. Phys Rev A,2007(75) :013612.
  • 5T D Ktihner, H Monien.Phases of the one-dimension- al Bose-Hubbard model[J]. Phys Rev B, 1998 (58) : R14741.
  • 6P Niyaz,R T Sealettar,C Y Fong,et al.Phase transi- tions in an interacting hoson model with near-neigh- bor repulsion[J].Phys Rev B,1994(50):362-373.
  • 7Till D Ktihner, Steven R White, H Monien. One-di- mensional Bose-Hubbard model with nearest-neigh- bor interaction[J].Phys Rev B, 1999(61) : 12474.
  • 8Tapan Mishra, Ramesh V Pai, S Ramanan.Supersolid and solitonic phases in the one-dimensional extended Bose-Hubbard model [J ]. Phys Rev A, 2009 (80): 043614.
  • 9D Jaksch,C Bruder,J I Cirac. Cold bosonic atoms in optical lattices[-J:. Phys Rev Lett, 1998 (81) : 3108- 3111.
  • 10T D Ktihner, H Monien.Phases of the One-dimen- sional Bose-Hubbard Model[J].Phys Rev B, 1998 (58) :R14741.

二级参考文献17

  • 1MACIEJ LEWENSTEIN, ANNA SANPERA, VERONICA AHUFINGER, et al. Ultracold Atomic Gases in Optical Lattices: Mimicking Condensed Matter Physics and Beyond [J]. Advances in Physics, 2007, 56: 243-379.
  • 2IMMANUEL BLOCH, JEAN DALIBARD, WILHELM ZWERGER. Many-body Physics with Ultracold Gases[J]. RevMod Phys, 2008, 80: 885-964.
  • 3JAKSCH D, BRUDER C, CIRAC J I, etal. Cold Bosonic Atoms in Optical Lattices[J]. PhysRevLett, 1998, 81: 3108.
  • 4GREINER M, MANDEL O, ESSLINGER T, et al. Quantum Phase Transition from a Superfluid to a Mott insulator in a Gas of Ultracold Atoms [J]. Nalture, 2002, 415: 39.
  • 5GUGLIELMINO M, PENNA V, CAPOGROSSO-SANSONE B. Mott Insulator to Superfluid Transition in Bose-Bose Mixtures in a Two-dimensional Lattice, [J].Phys Rev A, 2010, 82 : 021601 (R).
  • 6MATHEY L, WANG D-W. Phase Diagrams of One-dimensional Bose-Fermi Mixtures of Ultracold Atoms [J]. Phys RevA, 2007, 75: 013612.
  • 7DAVID WELD M, PATRICK MEDLEY, HIROKAZU MIYAKE. Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices [J]. PhysRev Lett:, 2009, 103: 245301.
  • 8RASHI SACHDEVA, SONIKA JOHRI, SANKALPA GHOSH. Cold Atoms in a Rotating Optical Lattice with Nearest-neighbor Interactions [J]. Phys Rev A, 2010, 82: 063617.
  • 9CHANDRASHEKAR C M. Disordered-quantum-walk-induced Localization of a Bose-Einstein Condensate [J].Phys RevA, 2011, 83: 022320.
  • 10JAKUB ZAKRZEWSKI. Mean Field Dynamics of Superfluid-insulator Phase Transition in a Gas of Ultra Cold Atoms [J]. PhysRevA, 2005, 71: 043601.

共引文献1

同被引文献18

  • 1HUBBARD J.Electron correlations in narrow energy bands[J].Proc Roy Soc 1963,276(1365):238-257.
  • 2李正中.固体理论[M].北京:高等教育出版社,2006.
  • 3SACHDEV S.Quantum phase transitions[M].Oxford:Cambridge University Press,2011.
  • 4AFFLECK I,MARSTON J B.Large n limit of the Heisenberg-Hubbard model:Implications for high-Tc superconductors[J].Phys Rev B,1988,37(7):3774-3777.
  • 5GEORGES A,KOTLIAR G.Hubbard model in infinite dimensions[J].Phys Rev B,1992,45(12):6479-6483.
  • 6MURMANN S,BERGSCHNEIDER A,KLINKHAMER V M,et al.Two fermions in a double well:Exploring a fundamental building block of the Hubbard model[J].Phys Rev Letts,2015,114:Art 080402,5pp.
  • 7JOHNSON T H,YUAN Y,BAO W,et al.Hubbard model for atomic impurities bound by the vortex lattice of a rotating Bose-Einstein condensate[J].Phys Rev Letts,2016,116:Art 240402,5pp.
  • 8HART R A,DUARTE P M,YANG T L,et al.Observation of anti ferromagnetic correlations in the Hubbard model with ultracold atoms[J].Nature,2015,519(7542):211-214.
  • 9FISHER M P,WEICHMAN P B,GRINSTEIN G,et al.Boson localization and the superfluid-insulator transition[J].Phys Rev B,1989,40(1):546-570.
  • 10JAKSCH D,BRUDER C,CIRAC J I,et al.Cold bosonic atoms in optical lattices[J].Phys Rev Letts,1998,81(15):3108-3111.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部