期刊文献+

固相合成锂离子电池正极材料LiMn_(1-x)Fe_xPO_4/C的结构与电化学性能

Synthesis and electrochemical properties of LiMn_(1-x)Fe_xPO_4/Ccathode materials for Li-ion battery by a facile solid-state method
下载PDF
导出
摘要 以葡萄糖为碳源,对LiH2PO4、MnCO3、FeC2O4与葡萄糖等反应物进行湿法球磨,随后在750℃温度下煅烧,通过固相反应实现对LiMnPO4的铁离子掺杂和碳包覆改性,得到锂离子电池正极材料LiMn1-xFexPO4/C(x=0、0.05、0.10、0.15、0.20)。利用X射线衍射(XRD),扫描电镜(SEM)及电化学测试等手段研究铁离子掺杂量对磷酸锰锂的晶体结构、微观形貌与电性能的影响。结果表明,LiMn0.9Fe0.1PO4/C结晶度良好,颗粒较均匀细小,具有较好的电化学性能,0.05C倍率下的首次放电比容量达到110(mA·h)/g,经过30次循环后,放电比容量约80(mA·h)/g。 LiMn1-xFexPO4/C cathode materials for Li-ion battery were synthesized at 750 ℃ by solid-state reaction method combining with the addition of the glucose as the carbon source and wet ball-milling of reactants. The effects of the doping amount of iron ions on the crystal structure, surface morphology and electrochemical properties of products of LiMn1-xFexPO4/C (x=0, 0.05, 0.10, 0.15, 0.20) were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical measurement, respectively. The results indicate that the LiMn0.9Fe0.1PO4/C has the best electrochemical performance, and the initial discharge capacity of the sample reaches approximately 110 (mA.h)/g at 0.05 C, moreover the discharge capacity keeps still to 80 (mA.h)/g after 30 cycles.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2015年第3期414-418,共5页 Materials Science and Engineering of Powder Metallurgy
基金 广州市应用基础重点项目(12C54041653)
关键词 锂离子电池 LIMNPO4 FE掺杂 固相合成 lithium ion battery LiMnPO4 metal ion doped solid-state reaction method
  • 相关文献

参考文献16

  • 1YAMADA A, HOSOYA M, CHUANG S C, et al. Olivine-type cathodes: Achievements and problems [J], Journal of Power Sources, 2003, 119/121: 232-238.
  • 2CHOI D, WANG D, BAE I T, et al. LiMnPO4 nanoplate grown via LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-Ion battery cathode [J]. Nano Letters, 2010, 10(8): 2799-2805.
  • 3KONAROVA M, TANIGUCHI I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-miUing followed by heat treatment and their electrochemical properties [J]. Powder Technology, 2009, 191 (1/2): 1 11-116.
  • 4PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1193.
  • 5KANG B, CEDER G. Battery materials for ultrafast charging and discharging [J]. Nature, 2009, 458(7235): 190-193.
  • 6LEE J W, PARK M S, ANASS B, et al. Electrochemical lithiation and delithiation of LiMnPO4: Effect of cationsubstitution [J]. Electrochimica Acta, 2010, 55(13): 4162- 4169.
  • 7DELACOURT C, LAFFONT L, BOUCHET R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (MFe, Mn) electrode materials[J]. Journal of the Electrochemical Society, 2005, 152(5): 91 3-917.
  • 8YONEMURA M, YAMADA A, TAKEI Y, et al. comparative kinetic study of olivine LixMPO4 (M=Fe, Mn) [J]. Journal of The Electrochemical Society, 2004, 151(9): 1352-1356.
  • 9DELACOURT C, POIZOT P, MORCRETTE M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J]. Chemistry of Materials. 2004, 16(1): 93-99.
  • 10WANG D, OU Y C, DRIZEN T, et al. Improving the electrochemical activity of LiMnPO4 via Mn-sitesubstitution [J]. Journal of the Electrochemical Society, 2010, 157(2): 225-229.

二级参考文献8

  • 1[1]Kohki Tamura, Tatsuo Horiba. Large-scale development of lithium batteries for electric vehicles and electric power storage applications[J]. Journal of Power Sources, 1999, 81 -82(2) : 156 - 161.
  • 2[2]Masaki Yoshio, XIA Yong-yao, Naoki Kumada, et al.Storage and cycling performance of Cr-modified spinel at elevated temperatures [J]. Journal of Power Sources, 2001, 101(1): 79-85.
  • 3[3]Park Y J, Kim J G, Kim M K, et al. Fabrication of LiMn2O4 thin films by sol-gel method for cathode materials of microbattery[J]. J Power Sources, 1998, 76(1): 41-47.
  • 4[4]XIA Yong-yao. An investigation of lithium ion insertion into spinel structure Li-Mn-O compounds [J]. J Electrochem Soc, 1996, 143(3): 625 - 633.
  • 5[6]Liu W, Farriagton G C. Synthesis and electrochemical studies of spinel phase LiMn2 O4 cathode material prepared by the pechini process[J]. J Electrochem Soc,1996,143(3):879-884.
  • 6[7]Amatucci G, Taraxcon J M. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries[J].Journal of the Electrochemical Society, 2002, 149(12): k31-k46.
  • 7[8]Hyun Joo, Bang V S. Donepudi, Jai Prakash. Preparation and characterization of partially substituted LiMyMn2-yO4 (M=Ni, Co, Fe) spinel cathodes for liion batteries[J]. Electrochimica Acta, 2002, 48 (4):443 - 451.
  • 8彭忠东,胡国荣,肖劲,刘业翔.掺杂稀土Eu对LiMn_2O_4结构和性能的影响[J].电源技术,2004,28(5):264-267. 被引量:14

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部