期刊文献+

基于数据挖掘的移动互联网数据包安全检测 被引量:2

下载PDF
导出
摘要 研究了基于数据挖掘算法对移动互联网数据包进行安全性检测的方法,其相比传统检测方法具有较好的灵活性。首先提取移动数据包中的内容特征,然后采用数据挖掘算法学习恶意移动数据包和安全移动数据包特征,建立分类模型。实验表明,这种基于数据挖掘方法建立的分类模型能够有效对移动数据包进行分类。
机构地区 北京邮电大学
出处 《警察技术》 2015年第4期58-61,共4页 Police Technology
  • 相关文献

参考文献11

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2A.Shabtai, U.Kanonov, Y.Hovid, et al. 'Andromaty': A Behavioral Malw-e Detection Framework Forandroid Devices[J]. Joumal of Intenig, ent hmlation Systems,2012,38(1):161-190.
  • 3A.-D. N:banidt, F. Petx, F. Lmnom:, et at Monitoring Smartphoncs for Anonaly Detection. Mobile Networks and Applicati[J], 2009, 14(1):92 -106.
  • 4M.L.Pona, F.Marielli, D.Sguadurra. A Survey on Security for Mobile Devices[J]. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2013,15(1):446-471.
  • 5J.chtnlg S.H.Wolzg H,qng. et al. SmartSirtnl-vlrm Detection aJld Alert tier Smarqpt)ntx[C]. MobiSys 17 Prcx'eeditg of the 5da InternationalCxxfferelce on Mobile Sys*, Applications and Services, 2007.258-271.
  • 6W.Lee, S.Stolfo.Data Mining Approaches for lnmtsion Detection[Cl.Pmcee&ags of the 7th USENIX cttrity Syn'q'aLml, 1998:26-29.
  • 7W.Lee, S.Stolfo, K.W.Mok. A Data Mining Framework for Buikhag Inmtsion Detection Mod&[C]. The 1999 IEEE Sylhtx3sitma on Setamty and Privacy. 1999:120-132.
  • 8W.Lee, S.Stolfo. A Framework for Cosm:clL, ag Featuresaad Models tbr Intrttfion DeteedotSysten:[J].ACM Trmlctiom on hmlfion and System Secttrity.2000,3(4):297-261.
  • 9张新有,曾华燊,贾磊.入侵检测数据集KDD CUP99研究[J].计算机工程与设计,2010,31(22):4809-4812. 被引量:121
  • 10Jiawei Hml, Micheline. Data Mining. Concepts and Techaaiques [M]. Morgan Katflinann.2011.

二级参考文献50

  • 1史美林,钱俊,许超.入侵检测系统数据集评测研究[J].计算机科学,2006,33(8):1-8. 被引量:24
  • 2祖宝明,詹永照,卿林.一种针对MANET入侵检测Agent分布的分簇方法[J].微计算机信息,2007,23(05X):41-43. 被引量:1
  • 3LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 4LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 5KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 6LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 7An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 8ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 9The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 10KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.

共引文献346

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部