期刊文献+

石墨烯负载铂催化剂的制备及稳定性 被引量:7

Preparation and stability of patinum-loaded graphene catalyst
下载PDF
导出
摘要 以天然石墨粉为原料,制备了氧化石墨(GO),再以GO和氯铂酸(H2Pt Cl6)为前驱体,乙二醇作为溶剂和还原剂,通过浸渍还原法成功制备出铂和石墨烯的复合催化剂(Pt/GR).利用X射线衍射仪、场发射扫描电镜和拉曼光谱仪对样品进行了形貌表征,结果表明Pt颗粒均匀分布在石墨烯的表面,相对于单质,负载有Pt的石墨烯表面更加褶皱且石墨烯片层更加分散.对Pt/GR进行电化学测试并与商用Pt黑催化剂进行对比,结果显示Pt/GR催化剂具有更高的电化学活性面积(ESCA)和更好的电催化性能,相对于Pt黑催化剂,Pt/GR具有更好的电化学稳定性. Graphene oxide(GO) was prepared using grapheme powder as raw material. With GO and H2 Pt Cl6as precursor and ethylene glycol as solvent and reducing agent, composite catalyst Pt/Graphene was prepared by impregnation-reduction method. The as-prepared Pt/Graphene catalyst is characterized by X-ray powder diffraction, scanning electronmicroscopy and Raman spectroscopy. The results show that the Pt nanoparticles are dispersed into the graphene nanosheets by forming a face centered cubic crystal structure. The stability of the catalyst is evaluated by cyclic voltammetry and chronoamperometry. Compared with commercial catalyst,Pt/Graphene catalyst shows an improved electrochemical active area(ESCA) and electro catalytic activity. The Pt/Graphene catalyst has more favorable stability than the commercial catalyst.
出处 《有色金属科学与工程》 CAS 2015年第3期40-44,共5页 Nonferrous Metals Science and Engineering
基金 国家自然科学基金(91010002 50874008) 国家基础研究计划973计划(2013CB934002)
关键词 石墨烯 铂催化剂 催化性能 稳定性 graphene platinum catalyst catalytic performance stability
  • 相关文献

参考文献21

  • 1Dung L F, Raghavendar R S G, Zhou L, et al. Graphene-sup- ported platinum and platinum-ruthenium nanoparticles with high electrocatal~'tic activity for methanol and ethanol oxidation[J]. Carbon, 2010, 48:781-787.
  • 2Hsin Y L, Hwang K C, Yeh C T. Poly (vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells[J]. Journal of the American Chemical Society, 2007, 129(32) :9999-10010.
  • 3Wang Z B, Li C Z, Gu D M, et al. Carbon riveted PtRu/C catalyst from glucose in-situ carbonization through hydrothermal method for direct methanol fuel cell[J]. Journal of Power Sources, 2013, 238:283-289.
  • 4Jehng J M, Liu W J, Pan T C, et al. Preparation of Pt nanoparticles on different carbonaceous structure and their applications to methanol electro-oxidation[J]. Applied Surface Science,2013,268: 425-431.
  • 5Xin Y C, Liu J G, Zhou Y, et al. Preparation and characteriza- tion of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell[J]. Journal of Power Sources, 2011,196:1012- 1018.
  • 6Coloma F, Sepulvedaescribano A, Fierro J L G, et al. Prepara- tion of platinum supported on pregraphitized carbon-blacks[J]. Langmuir, 1994, 10 (3):750-755.
  • 7Robert M D, Jeremy P M. Kinetic model of platinum dissolution in PEMFCs[J]. Journal of The Electrochemical Society,2003,150: 1523-1527.
  • 8Chang Y Z, Hart G Y, Li M Y, et al. Graphene-modified carbon fiber mats used to improve the activity and stability of Pt catalyst for methanol electrochemical oxidation[J]. Carbon, 2011,49: 5158 - 5165.
  • 9Prabhuram J, Svitlana P, Tim O, et al. Enhanced stability of PtRu supported on N-doped carbon for the anode of a DMFC[J]. Journal of The Electrochemical Society, 2012, 159:768-778.
  • 10Segoo K, Seongyop L, Peck D H, et al. Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37:4685-4693.

二级参考文献25

  • 1陈维民,孙公权,赵新生,孙丕昌,杨少华,辛勤.直接甲醇燃料电池电催化剂性能衰减研究[J].高等学校化学学报,2007,28(5):928-931. 被引量:13
  • 2Ahluwalia R. K., Wang XH.. J. Power Sources[J]..2008, 177(1):167-176.
  • 3Antolini E.. Appl. Catal. B: Environ.[J], 2009, 88(1/2): 1-24.
  • 4Mirabile Gattia D., Antisari M. V., Giorgi L., Marazzi R., Piscopiello E., Montone A., Bellitto S., Licoccia S., Traversa E.. J. Power Sources[J], 2009, 194(1): 243-251.
  • 5Geim A. K.. Science[J], 2009, 324(5934): 1530-1534.
  • 6Si Y. C., Samulski ET.. Chem. Mater.[J]..2008, 20(21):6792-6797.
  • 7Xu C., Wang X., Zhu J. W.. J. Phys. Chem. C[J], 2008, 112(50): 19841-19845.
  • 8Kou R., Shao Y. Y., Wang D. H., Engelhard M. H., Kwak J. H., Wang J., Viswanathan V. V., Wang C. M., Lin Y. H., Wang Y., Aksay I. A., Liu J.. Electrochem. Commun.[J], 2009, 11(5): 954-957.
  • 9Shao Y. Y., Zhang S., Wang C. G., Nie Z. M., Liu J., Wang Y., Lin Y. H.. J. Power Sources[J], 2010, 195(15): 4600-4605.
  • 10Hummers W. S., Offeman R. E.. J. Am. Chem. Soc.[J], 1958, 80(6): 1339.

共引文献21

同被引文献105

  • 1徐建波,华凯峰,王玉江,吕翔宇,李影.电流型氨气传感器的研究[J].郑州轻工业学院学报(自然科学版),2004,19(4):39-42. 被引量:13
  • 2赵鹏,方慧珏,薛腾,亓西敏,陆嘉星.计时电量法求NiCl_2(bpy)_3在DMF中的扩散系数和速率常数[J].物理化学学报,2005,21(11):1235-1239. 被引量:8
  • 3GuoShaojun, DongShaojun. Graphenenanosheet: synthesis, molecular engineering , thin film . hybrids , and energy and analytical applications[J]. Chemical Society Reviews, 2011, 405.
  • 4Jishan Wu, Wojciech Pisula, Klaus Muellen. Graphenes as Potential Material for Electronics[J]. Chemlnform, 2007, 3826.
  • 5Rao C N R, Sood A K, Voggu R, et al. Some Novel Attributes of Graphene[J]. Journal ofPhysicalChemistryLetters, 2010, 1(2): 572-580.
  • 6Allen Matthew J, Tung Vincent C, Kaner Richard B. Honeycomb carbon: a review ofgraphene[J]. Chemical Reviews, 2009, 1101.
  • 7Park Sungjin, Ruoff Rodney S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 44.
  • 8Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 3065696 .
  • 9Hummers W S, Offeman R E. Preparation ofgraphitic oxide. J Am Chem Soc[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
  • 10Brodie B C. Surle poids atomique du graphite[J]. 1859, 149: 249.

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部