期刊文献+

面向视觉大数据的监控ROF检测技术

下载PDF
导出
摘要 "大情报"平台是全面提高公安机关维护国家安全和社会稳定能力的重要推手。针对"大情报"平台数据量大,人为进行数据分析效率低、耗资大的问题,提出了一种面向视觉大数据的监控ROF检测技术。该方法首先分析对"大情报"平台数据分析的主要特点和面临的主要困难,然后详细阐述了基于"大情报"平台的海量视频焦点区域(Region of Focus,ROF)检测技术。应用实践表明:基于"大情报"平台的海量视频监控ROF检测技术能够根据不同场景通过智能识别分类,将区域按照重要性分级,把吸引监视注意和对分析有意义、有价值的动态或者静态区域提取出来,能够快速挖掘出破案情报,可以有效促进侦查分析工作的顺利开展。
出处 《科技创新导报》 2014年第35期45-47,共3页 Science and Technology Innovation Herald
  • 相关文献

参考文献6

  • 1Mecocci A . Real-TimeRecognition of Violent Actsin Monocular Color VideoSequences. IEEE.2007(4).
  • 2R*Datta,D.Joshi,J.Li.ImageRetrieval:Ideas,Influences andTrends of the New Age[J].ACMComputing Surveys(SCUR),2008,40(2):1~60.
  • 3Hayashi K.’Seki M. Real-time Violent Action Detectionfor Elevator.OptomechatronicMachine Vision.2005(6).
  • 4Supriya K.Abnormal activitydetection in video sequencesusing learnt probabilitydensities. CCTAPR. 2003.
  • 5张国庆,谢剑斌,刘通.一种基于角度空间的人脸识别方法[C]//仪器仪表学报.2008.
  • 6谭志国,孙即祥.基于点空间特征的两种点匹配算法[J].模式识别与人工智能,2007,20(3):325-330. 被引量:2

二级参考文献11

  • 1Umeyama S. Least-Squares Estimation of Transformation Parameters between Two Point Patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991, 13(4): 376-380
  • 2Besl P J, Mckay N D. A Method for Registration of 3-D Shapes. IEEE Trans on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
  • 3Wachowiak M P, Smolirova R, Zheng Yufeng, et al. An Approach to Muhimodal Biomedical Image Registration Utilizing Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 289-301
  • 4Chui H L, Rangarajan A. A New Algorithm for Non-Rigid Point Matching// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000:44-51
  • 5Bin R N, Khan H A, Kamran F, et al. A New Algorithm of Stereo Matching Using Epipolar Geometry//Proc of the 7th International Multi Topic Conference. Islamabad, Pakistan, 2003 : 21-24
  • 6Belongie S, Malik J, Puzicha J. Shape Matching and Obiect Recognition Using Shape Contexts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 509-522
  • 7Shapiro L S, Brady J M. Feature-Based Correspondence: An Eigenvector Approach. Image and Vision Computing, 1992, 10 (5): 283-288
  • 8Scott G L, Longuet-Higgins H C. An Algorithm for Associating the Features of Two Patterns. proc of the Royal Society of London Series B: Biological Sciences, 1991, 224:21-26
  • 9Pilu M. A Direct Method for Stereo Correspondence Based on Singular Value Decomposition // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997:261-266
  • 10Zhong Xue, Teoh E K. A Novel Eigenvector Approach to Pose and Correspondence Estimation//Proc of the IEEE International Conference on Systems, Man, and Cybernetics. Nashville, USA, 2000:1489-1494

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部