期刊文献+

模板法制备多孔核/壳结构的Fe_2O_3/Al纳米铝热薄膜 被引量:1

Preparation of Porous Core/Shell Structure Fe_2O_3/Al Nanothermite Membrane by Template Method
下载PDF
导出
摘要 通过聚苯乙烯(PS)胶晶球模板法制备出三维有序大孔(3DOM)α-Fe2O3薄膜骨架,再利用磁控溅射将Al沉积到3DOMα-Fe2O3骨架上得到核/壳结构的Fe2O3/Al纳米铝热复合薄膜。扫描电镜(SEM)测试结果表明:纳米Al均匀地附着在α-Fe2O3骨架表面,骨架孔结构由原先的近圆形转变为Al沉积后的类菱形,孔壁的厚度从32 nm增加到100 nm;采用X射线能谱(EDS)对Fe2O3/Al纳米铝热薄膜的元素含量进行了分析;由差示扫描量热法(DSC)分析显示铝热薄膜在490℃开始反应,经历固–固和固–液两个反应阶段,总放热量达到1374.7 J/g;使用激光点火器对铝热薄膜进行点火,薄膜飞溅出火花并伴有明亮刺眼的亮光,整个发火时间达2.6 ms,显示其能被点火并发生自蔓延反应,可作为一种理想的点火材料。 A three-dimensionally ordered macroporous(3DOM) α-Fe2O3 membrane was prepared by inversing poly- styrene(PS) spheres colloidal crystal template, and nano aluminum was then introduced into the 3DOM α-Fe2O3 skeleton using magnetron sputtering method. Scanning electron microscope(SEM) images show that nano A1 coats on surface of α-Fe2O3 skeleton uniformly, and pore structure converts into a kind of diamond from previously sub- orbicular after aluminizing with wall thickness increasing from 32 nm to 100 nm. Simultaneously, elemental analy- sis of the membrane is investigated via energy dispersive spectrum(EDS). Differential scanning calorimety(DSC) results indicate that onset temperature of the Fe2O3/A1 nanothermite membrane is 490℃, and thermite reaction be- tween A1 and Fe203 can be divided into solid-solid reaction and liquid-solid reaction. The total heat release is 1374.7 J/g. Ignition performance of the energetic membrane is investigated by laser ignition test. Sparks spatter outward with dazzling light can be observed for 2.6 ms, demonstrating that Fe203/A1 nanothermite membrane can be ignited normally.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第6期610-614,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(50806033) 国家博士后基金(2012M511285) 江苏省自然科学基金(BK20141399)~~
关键词 纳米铝热剂 胶晶球模板 三维有序大孔 核/壳结构 nanothermite colloidal crystal template three-dimensionally ordered macroporous core/shell structure
  • 相关文献

参考文献3

二级参考文献46

  • 1朱相丽.国外纳米材料在能源领域的研究现状[J].新材料产业,2006(12):50-54. 被引量:1
  • 2Pantoya M L, Granier J J. The effect of slow heating rates onthe reaction mechanisms of nano and micron composite thermite reaction[J]. J. Therm. Anal. Calorim., 2006,85(1): 1-7.
  • 3Sun J, Pantoya M L, Simon S L. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3[J]. Thermochim. Acta,2006, 444(2): 117-127.
  • 4Granier J J, Pantoya M L. Laser ignition of nanocomposite thermites[J]. Combust. Flame, 2004, 138(4): 373-383.
  • 5Valliappan S, Swiatkiewicz J, Puszynski J A. Reactivity of aluminum nanopowders with metal oxides[J]. Powder Technol., 2005, 156(2): 164-169.
  • 6Umbrajkar S M, Schoenitz M, Dreizin E L. Exothermic reactions in Al-CuO nanocomposites[J]. Thermochim. Acta, 2006, 451(1): 34-43.
  • 7Plantier K B, Pantoya M L, Gash A E. Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique[J]. Combust. Flame, 2005, 140(4) : 299-309.
  • 8Gash A E, Tillotson T M, Satcher J H, et al. Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts[J]. Chem. Mater., 2001, 13(3): 999-1 007.
  • 9Clapsaddle B J, Sprehn D W, Gash A E. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase[J]. J. Non-Cryst. Solids, 2004, 350(1): 173-181.
  • 10Gash A E, Satcher J, Simpson R L. Monolithic nickel(Ⅱ)-bashed aerogels using an organic epoxide: the importance of the counterion[J]. J. Non-Cryst. Solids, 2004, 350(2): 145-151.

共引文献32

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部