摘要
In order to improve the overall electrochemical properties of ABs-type storage alloys, the new type composite alloys M1Ni3.5Co0.6Mn0.4Al0.5-x wt% Mm0.89Mg0.11Ni2.97Mn0.14Al0.20Co0.54 (x = 0, 5, 10; M1 means mischmetal) were prepared by means of ball milling. The composite alloys are shown to be single LaNi5 phase by X-ray diffraction (XRD) patterns. The maximum discharge capacity slightly increases from 315 mAh·g^-1 for M1Ni3.5Co0.6Mn0.4Al0.5 to 324 mAh·g^-1 (x = 5) and 325 mAh·g^-1 (x = 10). The addition of AB3-type La-Mg- Ni-based alloy has a positive effect on the cycle stability. With the addition of Mm0.89Mg0.11Ni2.97Mn0.14-Al0.20Co0.54 alloy, the exchange current density (I0), the limiting current density (IL) and the diffusion coefficient of hydrogen (D) of the alloy electrodes increase, leading to a corresponding improvement of the high rate dischargeability.
In order to improve the overall electrochemical properties of ABs-type storage alloys, the new type composite alloys M1Ni3.5Co0.6Mn0.4Al0.5-x wt% Mm0.89Mg0.11Ni2.97Mn0.14Al0.20Co0.54 (x = 0, 5, 10; M1 means mischmetal) were prepared by means of ball milling. The composite alloys are shown to be single LaNi5 phase by X-ray diffraction (XRD) patterns. The maximum discharge capacity slightly increases from 315 mAh·g^-1 for M1Ni3.5Co0.6Mn0.4Al0.5 to 324 mAh·g^-1 (x = 5) and 325 mAh·g^-1 (x = 10). The addition of AB3-type La-Mg- Ni-based alloy has a positive effect on the cycle stability. With the addition of Mm0.89Mg0.11Ni2.97Mn0.14-Al0.20Co0.54 alloy, the exchange current density (I0), the limiting current density (IL) and the diffusion coefficient of hydrogen (D) of the alloy electrodes increase, leading to a corresponding improvement of the high rate dischargeability.
基金
financially supported by the National Natural Science Foundation of China(No.11364013)
Guangxi Scientific Experiment Center of Mining,Metallurgy and Environment Foundation of Guilin University of Technology(No.KH2012YB002)
the Education Department and Scientific Foundation of Guangxi(No.201203YB088)
the Students Innovative and Undertaking Projects of Guangxi(No.2013HSCX002)