期刊文献+

深低温停循环猪脑组织中小泛素样修饰蛋白表达实验研究 被引量:6

Expression of small ubiquitin-like modifiers in brain tissue after deep hypothermic circulatory arrest in piglet models
原文传递
导出
摘要 目的观察深低温停循环后猪脑组织中小泛素样修饰蛋白(small ubiquitin-like modifier,SUMO)2/3水平的表达。方法 24只中华小型猪中,6只行体外循环1h(体外循环组);其余18只行深低温停循环1h,其中仅行深低温停循环6只(停循环组);深低温停循环过程中行顺行脑灌注,灌注流量25mL/(kg·min)为脑灌注25组6只,灌注流量50mL/(kg·min)为脑灌注50组6只。术后2h处死猪留取海马及皮质脑组织标本,采用Western blot法检测SUMO2/3水平、SUMO特异性结合酶(E2)Ubc9、SUMO特异性蛋白酶(sentrin-specific protease,SENP)、凋亡因子Bax和caspase-3、抗凋亡因子Bcl-2表达水平。结果停循环组海马区及皮质区SUMO2/3(2 505.80±140.85、2 516.20±169.17)、Ubc9(646.32±18.46、868.39±20.63)、Bax(645.91±8.89、784.31±13.03)、caspase-3(765.80±20.84、818.06±10.86)表达水平明显高于体外循环组[SUMO2/3(889.12±5.71、886.73±10.32)、Ubc9(218.37±6.74、291.58±4.05)、Bax(202.26±2.05、300.40±3.69)、caspase-3(129.45±14.20、292.15±5.41)]、脑灌注25组[SUMO2/3(1 587.50±135.10、1 656.74±120.00)、Ubc9(522.60±14.42、569.30±19.09)、Bax(506.05±1.78、650.23±24.40)、caspase-3(566.41±20.67、408.66±13.85)]和脑灌注50组[SUMO2/3(1 207.91±115.78、1 196.63±28.37)、Ubc9(350.48±14.70、454.71±17.74)、Bax(462.20±6.86、502.49±16.73)、caspase-3(449.45±20.67、357.75±18.87)](P<0.01);SENP(251.99±12.50、340.27±16.39)、Bcl-2(431.78±19.77、224.36±14.53)表达水平明显低于体外循环组[SENP(752.26±4.45、874.10±7.93)、Bcl-2(761.33±5.77、791.97±7.27)]、脑灌注25组[SENP(380.60±13.20、411.13±11.68)、Bcl-2(535.85±18.00、420.35±21.47)]和脑灌注50组[SENP(426.63±16.42、599.30±17.55)、Bcl-2(634.86±14.84、624.67±13.15)](P<0.01);脑灌注50组海马和皮质区脑组织中SUMO2/3、Ubc9、Bax和caspase-3表达水平明显低于脑灌注25组(P<0.01),高于体外循环组(P<0.01),SENP和Bcl-2表达水平高于脑灌注25组(P<0.01),低于体外循环组(P<0.01)。结论在猪的深低温停循环模型中,选择性顺行脑灌注能起到较好的脑保护作用,其中灌注流量50mL/(kg·min)较25mL/(kg·min)具有更好的保护效果;SUMO2/3水平增加是深低温停循环脑损伤时启动的内源性应激反应,通过增加SUMO化、减少去SUMO化共同实现。 Objective To observe the expression of small ubiquitin-like modifier(SUMO)2/3in brain tissue after deep hypothermic circulatory arrest(DHCA)in piglet models.Methods In 24 piglets,6received cardiopulmonary bypass(CPB)for one hour(CPB group),the other 18 piglets received DHCA for one hour at 18 ℃,in which 6piglets only received DHCA(DHCA group),6received selective antegrade cerebral perfusion(SACP)at 25mL/(kg·min)during DHCA(SACP25group),and 6piglets received SACP at 50 mL/(kg·min)during DHCA(SACP50group).Two hours after operation,all piglets were sacrificed to get hippocampus and cerebral cortex specimens.The levels of SUMO2/3,Ubc9,sentrin-specific protease(SENP),Bax,Bcl-2and caspase-3were detected by Western blot technique.Results In the hippocampus and cerebral cortex,the expressions of SUMO2/3(2 505.80±140.85,2 516.20±169.17),Ubc9(646.32±18.46,868.39±20.63),Bax(645.91±8.89,784.31±13.03)and caspase-3(765.80±20.84,818.06±10.86)were significantly higher in CPB group than those in DHCA group(SUMO2/3:889.12±5.71,886.73±10.32;Ubc9:218.37±6.74,291.58±4.05;Bax:202.26±2.05,300.40±3.69;caspase-3:129.45±14.20,292.15±5.41),SACP25group(SUMO2/3:1 587.50±135.10,1 656.74±120.00;Ubc9:522.60±14.42,569.30±19.09;Bax:506.05±1.78,650.23±24.40;caspase-3:566.41±20.67,408.66±13.85)and SACP50group(SUMO2/3:1 207.91±115.78,1 196.63±28.37;Ubc9:350.48±14.70,454.71±17.74;Bax:462.20±6.86,502.49±16.73;caspase-3:449.45±20.67,357.75±18.87)(p〈0.01).The expressions of SENP and Bcl-2 were significantly lower in CPB group(251.99±12.50,340.27±16.39;431.78±19.77,224.36±14.53)than those in DHCA group(SENP:752.26±4.45,874.10±7.93;Bcl-2:761.33±5.77,791.97±7.27),SACP25group(SENP:380.60±13.20,411.13±11.68;Bcl-2:535.85±18.00,420.35±21.47)and SACP50group(SENP:426.63±16.42,599.30±17.55;Bcl-2:634.86±14.84,624.67±13.15)(p〈0.01).The expressions of SUMO2/3,Ubc9,Bax and caspase-3were significantly lower in SACP50 group than those in SACP25 group and higher than those in DHCA group(p〈0.01),and the expressions of SENP and Bcl-2were higher in SACP50 group than those in SACP25 group and lower than those in DHCA group(p〈0.01).Conclusion SACP plays a good cerebral protection role in DHCA piglet models,and SACP at 50mL/(kg·min)is superior to SACP at 25mL/(kg·min).The activation of SUMO2/3conjugation is believed to be an endogenous stress response after DHCA by acceleration of the conjugating process and inhibition of the deconjugating process.
出处 《中华实用诊断与治疗杂志》 2015年第6期531-534,共4页 Journal of Chinese Practical Diagnosis and Therapy
基金 国家自然科学基金(81371443) 国家自然科学基金(81400305) 北京市自然科学基金(7122056) 北京市自然科学基金(7142049) 北京市自然科学基金(7142137) 北京市自然科学基金(7152045) 新疆维吾尔自治区自然科学基金(2014211A063) 首都医科大学基础-临床科研合作基金(13JL26) 北京市优秀人才培养资助(青年骨干个人)(20140000204400001) 北京市卫生局高层次人才培养资助项目(2014-3-043)
关键词 深低温停循环 小泛素样修饰蛋白 选择性脑灌注 Deep hypothermic circulatory arrest piglet small ubiquitin-like modifier selective antegrade cerebral perfusion
  • 相关文献

参考文献13

  • 1Mahle WT, Tavani F, Zimmerman RA, etal. An MRI study of neurological injury before and after congenital heart surgery[J]. Circulation,2002,106(12 Suppl 1):1109-1114.
  • 2葛振伟,赵文增,谢周良,杨志远,王佳祥,张志东,程兆云,顾以茼.结合深低温停循环的双侧序贯顺行性脑灌注技术在主动脉弓部手术中的应用研究[J].中华实用诊断与治疗杂志,2010,24(1):24-25. 被引量:2
  • 3Wilkinson KA, Nakamura Y, Henley JM. Targets and consequences o{ protein SUMOylation in neuronsJ. Brain Res Rev,2010,64(1) : 195-212.
  • 4Datwyler AL, Lattig-Tunnemann G, Yang W, etal. SUMO2/3 conjugation is an endogenous neuroprotective mechanism[J]. J Cereb Blood Flow Metab,2011,31(11) :2152-2159.
  • 5Lee YJ, Miyake S, Wakita H, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the eytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cellsJ. J Cereb Blood Flow Metab, 2007,27 (5) ,950-962.
  • 6Cimarosti H, Lindberg C, Bomholt SF, et al. Increased protein SUMOylation following focal cerebral ischemia [J] . Neuropharmacology, 2008,54 (2) : 280-289.
  • 7Yang W, Ma Q, Mackensen GB, et al. Deep hypothermia markedly activates the small ubiquitin-like modifier conjugation pathway: implications for the fate of cells exposed to transient deep hypothermic cardiopulmonary bypass [J]. J Cereb Blood Flow Metab,2009,29(5) :886-890.
  • 8Meybohm P, Hoffmann G, Renner J, et al. Measurement of blood flow index during antegrade selective cerebral perfusion with near-infrared spectroscopy in newborn piglets[J]. Anesth Analg,2008,106(3) ,795-803.
  • 9Sasaki T, Tsuda S, Riemer RK, et al. Optimal flow rate for antegrade cerebral perfusion[J]. J Thorac Cardiovasc Surg, 2010,139(3), 530-535.
  • 10朱耀斌,李志强,范祥明,刘东海,张伟华,廖秋明,Steen Stig,李刚,刘扬,续玉林,张晶,乔晨晖.乳猪深低温停循环不同流量选择性脑灌注微透析实验研究[J].中华实用诊断与治疗杂志,2014,28(3):220-223. 被引量:9

二级参考文献43

  • 1孙立忠,刘志刚,常谦,朱俊明,董超,于存涛,熊辉,刘晋萍,王古岩.主动脉弓替换加支架“象鼻”手术治疗Stanford A型主动脉夹层[J].中华外科杂志,2004,42(13):812-816. 被引量:226
  • 2王为,徐志云,张宝仁,邹良健,梅举,陆方林,王军.61例主动脉弓部动脉瘤围术期处理[J].第二军医大学学报,2006,27(4):460-461. 被引量:2
  • 3Tan M E, Morshuis W J, Dossche K M, et al. Long term results after 27 years of surgical treatment of acute type A aortic dissection[J]. Ann Thorac Surg, 2005, 80(2):523-529.
  • 4Suzuki T, Shimono T, Katoh, et al. Extended total arch replacement by means of the open stent-grafting method to treat intimal tears after translurninal stent-graft placement for a raptured acute type A aortic dissection[J]. J Thurac Cardiovase Surg,2002,123(2) :354-356.
  • 5Vaideeswar P, Dixit V, Butany J, et al. Surgical pathology of chronic ascending aortic disseetions[J].Pathology, 2008, 40 (5) :505-512.
  • 6Ehrlich M P, Hagl C, McCullough J N, et al. Retrgrode cerebral perfusion provides negligible flow through brain capillaries in the pig[J]. J Thorac Cardiovasc Surg, 2001,122 (2) :331-338.
  • 7Bachet J, Guilmet D. Brain protection surgery of the aortic arch [J]. J CardSurg,2002,17(2):115-124.
  • 8Immer F, Lippeck C, Barmettler H, et al. Improvement of quality of life after surgery on the thoracic aorta: effect of antegrade cerebral perfusion and hort duration of deep hypothermic circulatory arrest [J]. Circulation, 2004, 110 ( 11 Suppl 1) : II 250-255.
  • 9Matalanis G, Hata M, Buxton B F. A retrospective comparative study of deep hypothermic circulatory arrest, retrograde, and antegrade cerebral perfusion in aortic arch surgery[J]. Ann Thorac Cardiovasc Surg,2003,9(3):174-179.
  • 10David T E, Armstrong S, Maqanti M, et al. Clinical outcomes of combined aortic root replacement with mitral valve surgery[J]. J Thorac Cardiovasc Surg,2008,136(1):82-87.

共引文献10

同被引文献44

  • 1蒋春笋,肖伟明,陈佺.线粒体分裂、融合与细胞凋亡[J].生物物理学报,2007,23(4):256-264. 被引量:12
  • 2Hannoun Z, Greenhough S, Jaffray E, et al. Post-translational modification by SUMOEJ~. Toxicology,2010,278(3) : 288-293.
  • 3Hiekey CM, Wilson NR, Hoehstrasser M. Function and regulation of SUMO proteases[-J~. Nat Rev Mol Cell Biol, 2012, 13(12) :755 766.
  • 4Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO[J~. Mol Ce11,2013,49(5):795-807.
  • 5Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperatureEJ~. Physiol Rev,2003,83(4): 1153-1181.
  • 6Yeh ET, Gong L, Kamitani T. Ubiquitin-like proteins= new wines in new bottles~J~. Gene,2000,248(1/2) :1 14.
  • 7Wilson VG, Rangasamy D. Intracellular targeting of proteins by sumoylation[-J~. Exp Cell Res,2001,271(1):57-55.
  • 8Melchior F, Schergaut M, Pichler A. SUMO: ligases, isopeptidases and nuclear poresEJ~. Trends Biochem Sci, 2003, 28(11) :612-618.
  • 9Hay RT. SUM(): a history of modificationEJ~. Mol Ce11,2005, 18(1) = 1-12.
  • 10Lee YJ, Miyake S, Wakita H, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning andhypothermia in SHSYSY cells[-J~. J Cereb Blood Flow Metab, 2007,27(5) :950-962.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部