期刊文献+

声矢量传感器阵中基于Kalman滤波和OPASTd的DOA跟踪算法 被引量:7

DOA Tracking Algorithm for Acoustic Vector-Sensor Array via Kalman Filter and OPASTd
下载PDF
导出
摘要 研究了声矢量传感器阵动目标角度跟踪问题,并提出了声矢量传感器阵中一种基于Kalman滤波和正交压缩近似投影子空间跟踪(Orthonormal projection approximation and subspace tracking of deflation,OPASTd)的波达方向(Direction of arrival,DOA)跟踪算法。该算法通过OPASTd算法来进行DOA的跟踪,从而克服了PASTd算法由于在某些情况下振荡但不收敛进而压缩数据、在迭代更新中由特征向量的不准确性产生误差累积等原因引起破坏信号子空间正交性的缺陷。Kalman滤波和OPASTd相结合算法可在估计角度的同时进行数据关联,与传统的PASTd算法相比,角度跟踪性能更好。该算法的优越性均可在文中得到验证。 A direction of arrival(DOA)tracking algorithm via Kalman filter and orthonormal projection approximation and subspace tracking of deflation(OPASTd)for acoustic vector-sensor array is proposed based on the investigation of target tracking.The proposed algorithm uses OPASTd algorithm to track DOA,thus overcoming the destroyed orthogonality of signal subspace of PASTd algorithm.The reasons for this defelt are:Firstly,the vibrated and non-convergent PASTd algorithm leads to data compression in some cases;secondly,the PASTd algorithm produces error accumulation by the inaccuracy of eigenvectors during iterative update.The proposed algorithm can estimate angle and contact data,which has a better DOA tracking performance than traditional PASTd algorithm.Simulation results verify the usefulness of the proposed algorithm.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第3期377-383,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(61371169)资助项目 江苏省博士后科研资助计划(1201039C)资助项目 中国博士后基金(2012M521099)资助项目 江苏高校优势学科建设工程资助项目
关键词 声矢量传感器阵 波达方向估计 KALMAN滤波 OPASTd acoustic vector-sensor array direction of arrival(DOA)estimation Kalman filter OPASTd
  • 相关文献

参考文献21

  • 1Nehorai A, Paldi E. Acoustic vector-sensor array processing[J]. IEEE Transactions on Signal Process- ing, 1994,42(9) :2481-2491.
  • 2Wu Y I, Wong K T, Lau S. The acoustic vector-sen- sorts near-field array-manifold[J]. IEEE Transac- tions on Signal Processing, 2010,58(7):3946-3951.
  • 3Liu Z, Ruan X, He J. Efficient 2 D DOA estimation for coherent sources with a sparse acoustic vector- sensor array[J]. Multidimensional Systems and Sig- nal Processing, 2013,24(1) :105- 120.
  • 4Wong K T. Acoustic vector-sensor FFH " blind" beamforming & geolocation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(1): 444-448.
  • 5Chen H, Zhang X. Two-dimensional DOA estima- tion of coherent sources for acoustic vector-sensor ar- ray using a single snapshot [J]. Wireless Personal Communications, 2013,72 (1) : 1-13.
  • 6Palanisamy P, Kalyanasundaram N, Swetha P M. Two dimensional DOA estimation of coherent signals using acoustic vector sensor array[J]. Signal Pro- cessing, 2012,92(1) :19-28.
  • 7付金山,李秀坤.声矢量阵DOA估计的稀疏分解理论研究[J].哈尔滨工程大学学报,2013,34(3):280-286. 被引量:8
  • 8Paulus C, Mars J I. Vector-sensor array processing for polarization parameters and DOA estimation[J]. EURASIP Journal on Advances in Signal Processing, 2010(2010) : 1-13.
  • 9付金山,李秀坤.基于声矢量阵小样本数据的DOA估计研究[J].传感器与微系统,2013,32(3):33-36. 被引量:4
  • 10姚直象,胡金华,姚东明.基于多重信号分类法的一种声矢量阵方位估计算法[J].声学学报,2008,33(4):305-309. 被引量:26

二级参考文献70

共引文献57

同被引文献50

  • 1吴孙勇,赵君,董续东,薛秋条,廖桂生.脉冲噪声下多伯努利滤波的单声矢量DOA跟踪[J].信号处理,2020,36(1):139-148. 被引量:5
  • 2王波,王树勋.一种基于二阶统计量的近场源三维参数估计方法[J].电子与信息学报,2006,28(1):45-49. 被引量:9
  • 3王杰贵,罗景青,靳学明.无源跟踪中基于灰关联信息融合的概率数据关联算法[J].电子学报,2006,34(3):391-395. 被引量:16
  • 4Kim J M, Lee O K, Ye J C. Compressive MUSIC= revisiting the link between compressive sensing and array signal processing[J]. IEEE Trans.on Information T[:eory, 2012, 58(1)= 278-301.
  • 5Naida P S. Sensor array signal processing :M:. Florida: CRC Press, 2010.
  • 6Zhang Y D, Amin M G, Himed B. Sparsity-based DOA estima- tion using co-prime arrays[C://Proc, of the IEEE InternationalConference on Acoustics, Speech and Signal Processing, 2013 : 3967 - 3971.
  • 7Liu Z, Ruan X, He J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array[J]. Multidimen- sional Systems : Signal Processing, 2013, 24(1) : 105 - 120.
  • 8Bencheikh M L, Wang Y. Joint DOD-DOA estimation using corn- bined ESPRIT-MUSIC approach in MIMO radar[J]. Electronics Letters, 2010, 46(15): 1081-1083.
  • 9Zoltowski M D, Haardt M, Mathews C P. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT [J]. IEEE Trans. on Signal Processing, 1996, 44(2):316-328.
  • 10Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation [J]. Signal Processing, 1995, 42 (2) : 121 - 138.

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部