期刊文献+

基于区域选择的快速POCS超分辨率复原算法研究 被引量:12

Research on fast POCS super- resolution restoration algorithm based on region selection
下载PDF
导出
摘要 POCS算法是目前超分辨率复原中应用非常广泛的一种复原算法,但是该算法运算量大,处理时间较长。针对POCS算法迭代时间较长、无法满足实时性的问题,提出了基于区域选择的快速POCS超分辨率复原算法(TPOCS)。光电探测系统中关注的重点是目标区域,而这一区域通常只占很少的像素位置,因此通过阈值分割和合并找到所有目标区域并集,然后仅在这个目标区域并集上进行超分辨率复原。实验结果表明:TPOCS算法去除了复原背景的巨大运算量,大大缩短了运算时间,减少了2个数量级使其达到实时,整体复原效果优于POCS算法。TPOCS算法能够自适应的选择目标区域,在保证复原性能的基础上大大缩短了运算时间,使其达到实时,进而可以在红外图像处理系统中应用。 POCS algorithm is a restoration algorithm which is widely used in super-resolution restoration. But this algorithm has large amount of computation and takes a long treatment time. Simultaneously, the details on the edge of the image are poor retention capacity. For the long iteration of the POCS super-resolution restoration algorithm and the shortcomings of incapability to meet the real-time detecting of optical detection system, a fast POCS super- resolution restoration algorithm based on the region selection (TPOCS) is proposed. The target area is the key point we focus on in the optical detection system, while this area contains only very small number of pixels. Therefore, we use threshold segmentation and combination to acquire the union of all target areas. Then we execute super-reso- lution restoration only in the union of all target areas. The experimental results show that TPOCS algorithm can de- crease the huge computation of background restoration and greatly reduce the operation time to achieve real-time. The overall resilience of the restoration method is superior to the traditional POCS. TPOCS algorithm could adap- tively select the target region and decrease the huge computation of background restoration. Furthermore, TPOCS algorithm can guarantee the performance of super-resolution restoration on the basis of greatly reducing the process- ing time to achieve real-time. So this super-resolution restoration algorithm can be applied in the practical infrared image processing system.
出处 《电子测量与仪器学报》 CSCD 北大核心 2015年第6期804-815,共12页 Journal of Electronic Measurement and Instrumentation
基金 吉林省长科技合(2013270)项目资助
关键词 超分辨率复原 凸集投影约束 红外弱小目标 区域选择 阈值分割 super-resolution restoration POCS infrared dim-small target region selection threshold segmentation
  • 相关文献

参考文献11

二级参考文献48

共引文献32

同被引文献119

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2王大海,梁宏光,邱娜,徐世录.红外探测技术的应用与分析[J].红外与激光工程,2007,36(z2):107-112. 被引量:7
  • 3朱晓临,陈晓冬,朱园珠,陈嫚,李雪艳.基于显著结构重构与纹理合成的图像修复算法[J].图学学报,2014,35(3):336-342. 被引量:12
  • 4王向军,郭文佳,韩双来,彭明,魏旭宾.基于计算机视觉的弹着点坐标远程测量系统[J].红外与激光工程,2006,35(5):624-628. 被引量:8
  • 5王鑫.基于双目立体视觉的特征一致物体匹配与定位研究[D].天津:天津大学,2013.
  • 6MUSAYEV E. Optoelectronic methods and devices for measuring bullet velocity [ J]. Measurement Techniques, 2006, 49 (3) :270-275.
  • 7HALL L. Method and apparatus for detecting a launch position of a projectile : USA, 8,454,691 [ P ]. 2013- 5-28.
  • 8SANCHEZ-PENA J M, MARCOS C, FEMANDEZ M Y, et al. Cost-effective optoelectronic system to measure the projectile velocity in high-velocity impact testing of air- craft and spacecraft structural elements [ J ]. Optical En- gineering 2007, 46(5) : 051014-6.
  • 9KALONIA R C, MITRA G, KUMA A, et al, Laser-based projectile speed measurement system[ J]. Optical Engineering, 2007,46(4) 044303-6.
  • 10GAUTHIER JR L R, DREWRY JR D G, BRUNNER L. Method for detecting projectile impact location and veloci- ty vector:USA 7, 197, 197[P1. 2007-3-27.

引证文献12

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部