期刊文献+

双曲型守恒律的一个4阶精度差分格式

A Fourth-order Accurate Difference Scheme of Hyperbolic Conservation Laws
下载PDF
导出
摘要 基于TVD限制器函数方法选取数值导数,在空间方向用分段3次多项式进行重构,对时间积分用Simpson求积公式,并用四阶Runge-Kutta NCE方法求中间时间点的值,得到求解一维非线性双曲型守恒律方程的4阶精度差分格式;之后给出2个经典数值算例,以验证格式的高精度高分辨率优点。 By applying piecewise cubic polynomial reconstruction in spacial direction and Simpson quadrature formulae about the time integral and fourth-order Runge-Kutta Natural Continuous Exten- sion method for solving the intermediate value of time point, a new fourth-order accurate difference scheme, which based on the total variation diminishing limiter function method to choose numerical derivative, is obtained for the one dimensional equation of hyperbolic conservation laws. And then, two typical numerical examples are given to show the advantages of high-accuracy and high-resolu- tion.
作者 刘珺
出处 《江西科学》 2015年第3期355-357,366,共4页 Jiangxi Science
基金 江西省自然科学基金项目(20114 BAB201001)
关键词 双曲型守恒律 差分格式 4阶精度 单元平均值 hyperbolic conservation laws difference scheme fourth-order accuracy cell averaged value
  • 相关文献

参考文献8

  • 1Harten A.High resolution schemes for hyperbolic conservation laws[J].J Comput Phys,1983,49:357-393.
  • 2Nessyahu H,Tadmor E.Non-oscillatory central differencing for hyperbolic conservation laws[J].J Comput Phys,1990,87:408-463.
  • 3郑华盛,刘珺.一个三阶基本无振荡的差分格式[J].南昌航空大学学报(自然科学版),2011,25(4):33-35. 被引量:1
  • 4明万元,郑华盛,杨海波,黄香蕉.一类基于通量分裂和最小二乘拟合的差分格式[J].南昌航空大学学报(自然科学版),2011,25(1):63-66. 被引量:2
  • 5明万元,郑华盛,黄香蕉.一类基于通量分裂的时空二阶精度差分格式[J].南昌航空大学学报(自然科学版),2011,25(4):36-40. 被引量:1
  • 6Harten A,Osher S.Uniformly high-order accurate nonoscillatory schemes I[J].SIAM J Numer Anal,1987,24:279-309.
  • 7Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].J Comput Phys,1988,77:439-471.
  • 8Zennaro M.Natural continuous extensions of RungeKutta methods[J].Math Comput,1986,46(173):119-133.

二级参考文献13

  • 1郑华盛,赵宁.一个基于通量分裂的高精度MmB差分格式[J].空气动力学学报,2005,23(1):52-56. 被引量:3
  • 2张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报,1988,7(2):1431-165.
  • 3Ami Harten. High Resolution Schemes for Hyperbolic Conservation Laws [ J ]. J Comput Phys, 1983,49 : 357 - 393.
  • 4Youssef Stiriba. A Nonlinear Flux Split Method for Hyperbolic Conservation Laws [ J ]. J Comput Phys,2002,176:20 - 39.
  • 5Liu X D , Osher S. Convex ENO High Order Multidimensional Schemes Without Field by Decomposition or Staggered Grids [ J ]. J Comput Phys, 1988,142:304 - 330.
  • 6Shu C W, Osher S. Effwient Implementation of Essential Nonoscillatory Shock Capturing Schemes [ J ]. J Comput Phys, 1988,77: 439 - 471.
  • 7MacCormaek R. W. Numerieal solution of the interaction of a shock wave with alaminar boundary layer[ J]. Lecture Notes in Phys ics, Springer-Veriag, 1971 ( 8 ) : 151-163.
  • 8B. Van Leer. Towards the ultimate conservative difference scheme 11. Monotonicity and conservation combined in a second-order scheme [ J ]. J. Comput. Phys. , 1974,14:361-370.
  • 9B. Van Leer. Towards the ultimate conservative difference scheme IV. A new approach to numerical convection [ J ]. J. Comput. Phys. , 1977,23:276-299.
  • 10B. Van Leer. Towards the ultimate conservative difference scheme Ili. Upstream-centeredfinite difference schemes for ideal compressi bleflow[ J]. J. Comput. Phys. , 1977,23:263-275.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部