期刊文献+

三峡水库夏季干流、支流(草堂河)水体的二氧化碳分压及扩散通量 被引量:6

Partial pressure and diffusion flux of dissolved carbon dioxide in the main stream of the Three Gorge Reservoir and the Caotang River in summer
下载PDF
导出
摘要 2013年5-7月对三峡水库库区干流及支流草堂河水体CO_2分压(pco_2)进行走航观测.结果表明:夏季草堂河表层pco_2为15.8~226.4 Pa,三峡水库库区干流表层pco_2为198.8~261.1 Pa.对支流草堂河剖面监测发现,表层pco_2最低为15.8 Pa,随着深度增加,pco_2快速增加,在水深5 m后逐渐稳定,最大值为294.2 Pa.通过计算,支流草堂河在5,6,7月的CO_2通量分别为16.46,-4.91和30.85 mmol·m^(-2)·d^(-1),库区干流CO_2通量为45.83 mmol·m^(-2)·d^(-1).因此,三峡库区干流表现为CO_2的"源",支流草堂河CO_2释放远小于库区干流,6月份表现为"汇". From May 2013 to July 2013, monthly cruise investigation was conducted to study the partial pressure of dissolved carbon dioxide (pco2) in the main stream of the Three Gorge Reservoir and its tributary, the Caotang River. The results show that pco2 in the surface water of the Caotang River varied from 15.8 to 226.4 Pa, and 198.8 to 261.1 Pa for the main stream of the Three Gorge Reservoir. Along the water column of the Caotang River, the lowest value of pco2 in surface water was 15.8 Pa, and increased rapidly with the depth, and kept stable below 5 m with a maximum value of 294.2 Pa. According to calculations, emission fluxes of CO2 in the Caotang River in the period of investigation were about 16.46, 4.91 and 30.85 mmol m^-2·d^-1, respectively. In the main stream of the Three Gorge Reservoir, this flux was 48.54 mmol·m^-2·d^-1. The results show that the main stream of the Three Gorge Reservoir is a source for atmospheric CO2, and the tributary Caotang River emits less CO2 than the main stream, even a sink for atmospheric CO2 on June.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期311-318,共8页 Journal of Shanghai University:Natural Science Edition
基金 国家水体污染控制与治理科技重大专项(2012ZX07104-001) 国家自然科学基金资助项目(41273128 41473082)
关键词 温室气体 二氧化碳分压 二氧化碳通量 草堂河 三峡库区 greenhouse gas partial pressure of carbon dioxide diffusion flux of carbon dioxide the Caotang River the Three Gorge Reservoir
  • 相关文献

参考文献24

  • 1何建坤,刘滨,王宇.全球应对气候变化对我国的挑战与对策[J].清华大学学报(哲学社会科学版),2007,22(5):75-83. 被引量:44
  • 2隋欣,廖文根.中国水电温室气体减排作用分析[J].中国水利水电科学研究院学报,2010,8(2):133-137. 被引量:20
  • 3李海英,冯顺新,廖文根.全球气候变化背景下国际水电发展态势[J].中国水能及电气化,2010(10):29-37. 被引量:14
  • 4王文铭,艾尉.低碳经济背景下我国水电发展前景分析及建议[J].中国水利,2010(14):25-26. 被引量:13
  • 5RUD J, HARRIS R, KELLY C, et al. Are hydroelectric reservoirs significant sources of greenhouse gases [J]. Ambio, 1993, 22: 246~248.
  • 6DUCHEMIN E, LUCOTTE M. Production of the greenhouse gases CH4 and CO2 buried hydro- electric reservoirs of the boreal region [J]. Global Biogeochem Cycles, 1995, 9(4): 529-540.
  • 7TREMBLAY A, VARFALVY L, ROEHM C, et al. Greenhouse gas emissions: fluxes and process, Hydroelectric reserviors and natural environments [R]. Environmental Science Series, New York: Springer, 2005: 233-250.
  • 8SANTOS M, ROSA L, SIKAR B, et al. Gross greenhouse gas fluxes from hydro-power reservior compared to thermo-power plants [J]. Energy Policy, 2006, 34(4): 281-288.
  • 9KELLER M, STALLARD R. Methane emission by bubbling from Gatun Lake, Panama [J]. Journal of Geophysical Research, 1994, 99(4): 529-540.
  • 10DELMAS R, GALY-LACAUX C, RICHARD S. Emissions of greenhouse gases from the tropical hydroelectric reservioir of Petit Saut (French Guiana) compared with emissions from thermal alternatives [J]. Global Biogeochemical Cycles, 2001, 15(4): 993-1003.

二级参考文献146

共引文献261

同被引文献83

引证文献6

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部