期刊文献+

基于RVM的液体火箭发动机试验台故障预测方法 被引量:4

RVM-based fault prediction method for liquid rocket engine test stand
下载PDF
导出
摘要 液体火箭发动机试验台故障预测问题实际上是与试验台相关的参数预测问题,通过预测相关参数在试验台运行过程中的变化趋势,可以判断试验台未来某一时刻是否可能发生故障。由于液体火箭发动机试验台系统复杂、不易建模,提出了一种相关向量机(relevancevector machine,RVM)故障预测模型。在模型的训练阶段,根据数据序列的特征,分别采用单参量、相空间重构和多参量的方法进行了模型的训练,然后利用训练好的模型对试验台总体健康度和启动过程推力进行了趋势预测。预测结果表明,该方法能有效地跟踪试验台可能发生的故障及故障发展趋势。 The fault prediction of liquid rocket engine test stand is actually the prediction of parameters associated with the test rig. By predicting the variation trends of those parameters, whether the test rig will get fault at a certain time in the future can be judged. As liquid rocket engine test-stand system is complex and difficult to model, a model based on relevance vector machine (RVM) is proposed in this paper. At the training stage of the model, the single-parameter method, phase space reconstruction method and multi-parameter method are used respectively to train the model according to the features of the data sequence, and then the trend of overall health degree and start-up thrust of the test stand is predicted by the trained model. The prediction result shows that this method based on RVM can effectively predict the possible fault and its trend.
出处 《火箭推进》 CAS 2015年第3期80-86,共7页 Journal of Rocket Propulsion
关键词 液体火箭发动机试验台 相关向量机 故障预测 liquid rocket engine test stand RVM fault prediction
  • 相关文献

参考文献14

  • 1郭宵峰.液体火箭发动机试验[M].北京:宇航出版社,1990.
  • 2张恒喜,郭基联,朱家元,等.小样本多元数据分析及应用[M].西安:西北工业大学出版社,2002:1-3.
  • 3范庚,马登武,张继军.一种基于小样本数据的装备故障预测方法[J].弹箭与制导学报,2012,32(4):225-228. 被引量:5
  • 4BISHOP C M,TIPPING M E. Variational relevance vectormachines [C]// Proceedings of Uncertainty in ArtificialIntelligence. USA: Morgan Kaufinann, 2000: 46-53.
  • 5TIPPING M E. Baseline Matlab implementation of “SparseBayesian” model estimation [EB/OL]. [2009-02-22]. http://miketipping.com/papers.htm.
  • 6TIPPING M E. Bayesian inference: an introduction toprinciple and practice in machine learning [EB/OL].[2006-06- 26]. http://miketipping.com/papers.htm.
  • 7TIPPING M E, FAUL A C. Fast marginal likelihoodmaximisation for sparse Bayesian model [EB/OL].[2006-06- 26]. http://www.miketipping. com/papers, htm.
  • 8李刚,邢书宝,薛惠锋.基于RBF核的SVM及RVM模式分析性能比较[J].计算机应用研究,2009,26(5):1782-1784. 被引量:13
  • 9范庚,马登武,邓力,吕晓峰.基于灰色相关向量机的故障预测模型[J].系统工程与电子技术,2012,34(2):424-428. 被引量:33
  • 10郭阳明,蔡小斌,张宝珍,翟正军.故障预测与健康状态管理技术综述[J].计算机测量与控制,2008,16(9):1213-1216. 被引量:49

二级参考文献87

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:285
  • 2瓦普尼克.统计学习理论的本质[M].北京:清华大学出版社,2004.
  • 3WEBB A R.统计模式识别[M].2版.北京:电子工业出版社,2004:15-16.
  • 4SHAWE-TAYLOR J, CRISTIANINI N. Kemel methods for pattern analysis [ M ]. Cambridge : Cambridge University Press,2004.
  • 5MICHAEL E T. Sparse Bayesian learning and the relevance vector machine[ J ]. ,Journal of Machine Learning Research, 2001,1:211 - 244.
  • 6[EB/OL]. http ://stats. ox. ac. uk/pub/pmn.
  • 7[EB/OL]. http ://kdd. ics. edu/summary. data. type. html.
  • 8Capobianco E. On support vector machines and sparse approximation for random processes [ J ]. Neurocomputing, 2004,56 : 39 -60.
  • 9Francis E H Tay, Cao L J. Application of support vector machines in financial time series forecasting [ J ]. Omega, 2001,29 : 309 -317.
  • 10Smola A J, Scholkoph B. A tutorial on support vector regression [J]. Statistics and Computing, 2004,14(3) :199 -222.

共引文献112

同被引文献63

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部