期刊文献+

超球面上的切触有理插值 被引量:1

Osculatory Rational Interpolation on the Hypersphere
下载PDF
导出
摘要 给定单位超球面Sd-1上n+1个点及其对应的参数值和其中n个点处的导向量,基于向量的Samelson逆,构造了广义逆向量值有理函数.证明了所构造的向量值有理函数为[2n,2n]型,在指定的参数值处插值于所给点及其导向量,且向量值有理函数位于超球面上.为了说明方法的有效性,给出了数值实例. We have created the generalized inverse vector-valued rational function,based on vector's Samelson inverse when given n+1points and nderivative vectors on a unit hypersphere Sd-1.We prove that every vector-valued rational function created is a[2n,2n]type and is on a hypersphere,and the given parameter values interpolate in the given points and its derivative vectors.Numerical results are given to prove the effectiveness of the method.
作者 许艳 郭清伟
出处 《大学数学》 2015年第2期5-9,共5页 College Mathematics
基金 国家自然科学基金青年基金(51309071) 安徽省高等学校省级自然科学研究项目(2011AJZR0071)
关键词 超球面 超球面上插值 Samelson逆 向量值有理函数 the hypersphere interpolation on hypersphere Samelson inverse vector-valued rational function
  • 相关文献

参考文献7

  • 1Piegl L.The sphere as a rational Bézier surface[J].Computer Aided Geometric Design,1986,3(1):45-52.
  • 2Dietz R,Hoschek J.and Jüttler B.An algebraic approach to curves and surfaces on the sphere and other quadrics[J].Computer Aided Geometric Design,1993,10(4):211-229.
  • 3Dietz R,Hoschek J.and Jüttler B.Rational patches on quadric surfaces[J].Computer-Aided Design,1995,27(1):27-40.
  • 4Anton Gfrerrer.Rational interpolation on hypersphere[J].Computer Aided Geometric Design,1999,16(1):21-37.
  • 5Thierry Gensane.Interpolation on the hypersphere with Thiele type rational interpolants[J].Numerical Algorithms,2012,60(3):523-529.
  • 6Graves-Morris P R.Vector-valued rational interpolants I[J].Numer.ische Mathematik,1983,42(2):331-348.
  • 7王仁宏,朱功勤.有理函数逼近[M].北京:科学出版社,2004,133-139.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部