期刊文献+

mTOR基因多态性与小儿癫癎易感性的相关性 被引量:1

Association of mammalian target of rapamycin gene polymorphisms with the risk of pediatric epilepsy
原文传递
导出
摘要 目的:探讨哺乳动物雷帕霉素靶蛋白(mTOR)基因两个SNP位点rs2295080和rs2536的多态性与小儿癫癎易感性的关系。方法采用病例对照研究,选取480例癫癎患儿(包括116例难治性癫癎)以及503例健康儿童作为研究对象。利用PCR-RFLP方法进行两个SNP位点的多态性检测,比较两组儿童基因型及等位基因的分布频率。结果癫癎组SNP位点rs2295080的基因型(TT、TG、GG)频率和等位基因频率与健康对照组比较差异均无统计学意义(P〈0.05);SNP位点rs2536的基因型(AA、AG、GG)频率两组比较差异亦无统计学意义(P〉0.05),但癫癎组的等位基因G频率显著高于健康对照组(OR=1.344,P=0.042,95%CI:1.010~1.789)。结论 mTOR基因SNP位点rs2536与癫癎的易感性可能相关。 Objective To study the association between two single nucleotide polymorphisms (SNP), rs2295080 and rs2536, in mammalian target of rapamycin (mTOR) gene and the susceptibility to pediatric epilepsy. Methods A case-control study was performed on 480 children with epilepsy (116 cases of refractory epilepsy) and 503 healthy children. SNP rs2295080 and rs2536 in the mTOR gene were detected by polymerase chain reaction restriction and fragment length polymorphisms (PCR-RFLP). Genotype and allele frequencies of SNP rs2295080 and rs2536 were compared between the children with epilepsy and healthy controls. Results There were no signiifcant differences in the genotype and allele frequencies of SNP rs2295080 between the children with epilepsy and healthy controls. There were no signiifcant differences in the genotype frequencies of SNP rs2536 between the two groups either, but the frequency of G allele of SNP rs2536 was higher in children with epilepsy than that in healthy controls (P=0.042, OR=1.344, 95%CI:1.010-1.789). Conclusions SNP rs2536 of mTOR gene may be associated with the risk of pediatric epilepsy.
出处 《中国当代儿科杂志》 CAS CSCD 北大核心 2015年第6期560-564,共5页 Chinese Journal of Contemporary Pediatrics
基金 湖北省自然科学基金(2011CDB306)
关键词 癫癎 哺乳动物雷帕霉素靶蛋白 基因多态性 儿童 Epilepsy Mammalian target of rapamycin Genetic polymorphism Child
  • 相关文献

参考文献15

  • 1Lipton JO, Sahin M. The neurology of mTOR [J]. Neuron, 2014 84(2): 275-291.
  • 2Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy [J]. J Neurosci, 2009, 29(21): 6964-6972.
  • 3Shao JB, Li Y, Zhao PW, et al. Association of mTOR polymorphisms with cancer risk and clinical outcomes: a meta- analysis [J]. PloS one, 2014, 9(5): e97085.
  • 4Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (1BE) [J]. Epilepsia, 2005, 46(4): 470-472.
  • 5Kwiatkowski DJ. Tuberous sclerosis: from tubers to mTOR [J]. Ann Hum Genet, 2003, 67(Ptl): 87-96.
  • 6Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC- roTOR pathway in human disease [J]. Nat Genet, 2005, 37(1): 19-24.
  • 7Crino PB. mTOR: A pathogenic signaling pathway in developmental brain malformations [J], Trends Mol Med, 2011, 17(12): 734-742.
  • 8Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target [J], Epilepsia, 2012, 53(7): 1119-1130.
  • 9Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly [J]. Nat Genet, 2012, 44(8): 941-945.
  • 10Poduri A, Evrony GD, Cai X, et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations [J]. Neuron, 2012, 74(1): 41-48.

二级参考文献39

  • 1Sengupta S, Peterson TR, Sahatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell, 2010, 40(2) : 310-322.
  • 2Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci, 2010, 33 (2) : 67 -75.
  • 3Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol, 2009, 10 (5) : 307-318.
  • 4Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neurosci Lett, 2006, 401(1-2): 35-39.
  • 5Raab-Graham KF, Haddick PC, Jan YN, et al. Activity- and mTOR-dependent suppression of Kv 1. 1 channel mRNA translation in dendrites. Science, 2006, 314 ( 5796 ) : 144-148.
  • 6Wang P, Yang X, Wu P, et al. GM3 signals regulating TNF-alpha expression are mediated by RICTOR and Arhgdib in mouse melanoma B16cells. Oncology, 2007 ( 5-6 ) , 73:430-438.
  • 7Yamamoto A, Schindler CK, Murphy BM, et al. Evidence of tumor necrosis factor receptor 1 signaling in human tempo- ral lobe epilepsy. Exp Neurol, 2006, 202 (2): 410- 420.
  • 8Ganley IG, Lam du H, Wang J, et al. ULK1. ATG13. FIP200 complex mediates mTOR signaling and is essential for autophagy. ~ BioL Chem, 2009, 284 (18): 12297- 12305.
  • 9Cao L, Xu J, Lin Y, et al. Autophagy is unregulated in rats with SE and partly inhibited by Vitamin E. Biochem Biophys Res Commun, 2009, 379(4): 949-953.
  • 10Binder DK, Steinh~iuser C. Functional changes in astroglial cells in epilepsy. Glia, 2006, 54(5) : 358-368.

共引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部