期刊文献+

脑机接口中多线性主成分分析的张量特征提取 被引量:4

Tensor Feature Extraction Using Multi-linear Principal Component Analysis for Brain Computer Interface
原文传递
导出
摘要 脑机接口(BCI)可以直接通过脑电(EEG)信号控制外部设备。本文针对传统主成分分析(PCA)和二维主成分分析(2DPCA)处理多通道EEG信号的局限性,提出了多线性主成分分析(MPCA)的张量特征提取和分类框架。首先生成张量EEG数据,然后进行张量降维并提取特征,最后用Fisher线性判别分析分类器进行分类。实验中将新方法应用到BCI competitionⅡ数据集4和BCI competitionⅣ数据集3,分别使用了EEG数据的时空二阶张量表示形式和时空频三阶张量表示形式,通过对可调参数多次调试,取得了高于其它同类降维方法的最佳结果。二阶输入最高正确率分别达到81.0%和40.1%,三阶输入分别达到76.0%和43.5%。 The brain computer interface(BCI)can be used to control external devices directly through electroencephalogram(EEG)information.A multi-linear principal component analysis(MPCA)framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis(PCA)and two-dimensional principal component analysis(2DPCA).Based on MPCA,we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction.Then we used the Fisher linear classifier to classify the features.Furthermore,we used this novel method on the BCI competition Ⅱ dataset 4and BCI competition Ⅳ dataset 3in the experiment.The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used.The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ.For two-order tensor,the highest accuracy rates could be achieved as 81.0%and 40.1%,and for three-order tensor,the highest accuracy rates were 76.0% and 43.5%,respectively.
作者 王金甲 杨亮
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第3期526-530,共5页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61473339) 中国博士后科学基金资助项目(2014M561202) 河北省2014年度博士后专项资助项目(B2014010005) 首批"河北省青年拔尖人才"资助项目
关键词 脑机接口 张量 多线性主成分分析 特征提取 多通道脑电信号 brain-computer interface tensor multi-linear principal component analysis feature extraction multi-channel electroencephalogram signal
  • 相关文献

参考文献8

  • 1WOI.PAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113(6): 767-791.
  • 2BAGHDAD1 G, NASRABADI A M. Comparison of different EEG features in estimation of hypnosis susceptibility level[J]. Comput Biol Med, 2012, 42(5): 590-597.
  • 3王金甲,周丽娜.基于PCA和LDA数据降维的脑磁图脑机接口研究[J].生物医学工程学杂志,2011,28(6):1069-1074. 被引量:8
  • 4YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J].IEEE Trans Pattern Anal Math Intell, 2004, 26(1): 131-137.
  • 5LU H, PLATANIOTIS K N, VENETSANOPOUI.OS A N. MPCA: multilinear principal component analysis of tensor ob- jects [J]. IEEE Trans Neural Netw, 2008, 19(1) : 18-39.
  • 6LI J, ZHANG L, TAO D, et al. A prior neurophysiologic knowledge free tensor-based scheme for single trial EEG classi- fication [J]. IEEE Trans Neural Syst Rehabil Eng, 2009, 17 (2): 107-115.
  • 7LATHAUWER L D, MOOR B D, VANDEWALLE J. A multilinear singular value decomposition [J]. SIAM J Matrix Anal Appl, 2000, 21(4): 1253-1278.
  • 8LU H, ENG H L, GUAN C, et al. Regularized common spa- tial pattern with aggregation for EEG classification in small- sample setting [J]. IEEE Trans Biomed Eng, 2010, 57(12): 2936-2946.

二级参考文献12

  • 1WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002, 113(6):767-791.
  • 2WU W E I, XIAORONG G A O, HONG B O, et al.. Classifying single-trial EEG during motor imagery by iterative spario-spectral patterns learning (ISSPL)[J].IEEE Transactions on Biomedical Engineering, 2008,55 (6) : 1733-1743.
  • 3MELLINGER J, SCHALK G, BRAUN C, et al. An MEG- based brain-computer interface (BCI) [J]. Neurolmage, 2007, 36(3) :581-593.
  • 4GEORGOPOULOS A P, SCHWARTZ A B, KETTNER R E. Neuronal population coding of movement direction[J]. Science, 1986, 233(4771) :1416-1419.
  • 5BALL T, SCHULZE-BONHAGE A, AERTSEN A, et al. Differential representation of arm movement direction in relation to cortical, anatomy and function [J]. Journal of Neural Engineering, 2009,6(1) :016006, doi: 10. 1088/1741-2560/6/ 1/016006.
  • 6WALDERT S, BRSUN C, PREISSL H. Decoding performance for hand movement, EEG vs. MEG[C]. 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07,2007: 5346-5348.
  • 7WALDERT S, PREISSL H, DEMAND E, et al. Hand movement direction decoded from MEG and EEG [J]. Journal of Neuroscience,2008,28(4) :1000-1008.
  • 8BRADBERRY T J, RONG F, CONTRERAS-VIDAL J L. Decoding center-out hand velocity from MEG signals during visuomotor adaptation [J]. Neurolmage, 2009, 47(4): 1691- 1700.
  • 9MULLER K R, ANDERSON C W, BIRCHG E. Linear and nonlinear methods for brain computer interfaces [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2) :165-169.
  • 10JOLLIFFE I J. Principal component analysis [M]. New York, Springer, 2002 : 1-20.

共引文献7

同被引文献27

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部