期刊文献+

稳定分层流密度界面处湍流混合与分形结构 被引量:5

TURBULENT MIXING AND FRACTAL STRUCTURE AT A DENSITY INTERFACE IN A STABLY STRATIFIED FLUID
下载PDF
导出
摘要 采用室内混合箱研究稳定分层流(上层淡水、下层盐水)无剪切密度界面处的湍流混合与分形结构.湍流通过浸没在盐水层中的振动格栅产生,密度界面结构通过在盐水层中添加荧光剂或染料可视化,共进行12组实验.实验观测并记录了:(1)淡、盐水密度界面距混合箱底部的平均高程(h);(2)淡、盐水层的密度(ρ0,ρ),(3)淡、盐水密度界面.其中,淡、盐水密度界面通过照片、录像进行记录.观测结果用于计算:(1)盐水层密度;(2)卷挟速度,(3)整体理查孙数(Rio),(4)二维、三维密度界面,(5)二维、三维密度界面的分形维度.结果分析发现:(1)湍流卷挟率随Rio增大而减小,并且满足Rio的-3/2或-7/4幂律;表明随着湍流强度的减弱,混合的速度也越来越缓慢;(2)二维密度界面分形维度大于1,三维密度界面分形维度大于2;表明二维、三维密度界面存在分形结构;(3)分形维度随Rio的增大而减小;表明随着湍流强度的减弱,密度界面也越来越趋于光滑. Laboratory mixing box experiments were undertaken to examine turbulent mixing and fractal structure at a density interface in a stably stratified two-component fluid(fresh on salt), subjected to shear-free turbulence induced by an oscillating grid within the salt water layer. The density interface was visualized by adding fluorescein and dye into the salt water layer. A total of 12 runs were made. Measurements were made of(a) the height of the mean density interface above the bottom of the mixing box;(b) the densities of the fresh water and salt water layers. Photographs and videos were made of the two-dimensional and three-dimensional density interfaces. Calculations were made for(1) the entrainment velocity;(2) the overall Richardson number(Ri0); and(3) the fractal dimension of the two-dimensional and three-dimensional density interfaces. The entrainment rate decreases with an increasing overall Richardson number. It can be expressed as Rioto the-3/2 or-7/4 power. This indicates that the rate of mixing deceases with decreasing turbulence intensity. Fractal dimension of the two-dimensional density interface is larger than 1, while that of the three-dimensional density interface is larger than 2. Fractal structures are present on the two-dimensional and three-dimensional density interfaces. Fractal dimension decreases with an increasing overall Richardson number. This suggests that the density interfaces become smoother with decreasing turbulence intensity.
作者 张爽 时钟
出处 《力学学报》 EI CSCD 北大核心 2015年第4期547-556,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家留学基金管理委员会(20111831186) 海洋工程国家重点实验室自主研究课题(GKZD010065)资助项目~~
关键词 稳定分层流 无剪切 密度界面 湍流混合 分形 stably stratified fluid shear free density interface turbulent mixing fractal
  • 相关文献

参考文献35

  • 1Richardson LE The supply of energy from and to atmospheric ed- dies. Proceedings of the Royal Society of London, 1920, A97: 354- 373.
  • 2Taylor GI. Effect of variation in density on the stability of super- posed streams of fluid. Proceedings of the Royal Society of London, 1931, A132 (820): 499-523.
  • 3Goldstein S. On the stability of superposed streams of fluids of dif- ferent densities. Proceedings of the Royal Society of London, 1931, A132 (820): 524-548.
  • 4Synge JL. The stability of heterogeneous liquids. Transactions of the'Royal Society of Canada, 1933, XXVII (3): 1-8.
  • 5Tamer JS. Turbulent entrainment: the development of the entrain- ment assumption and its application to geophysical flows. Journal of Fluid Mechanics, 1986, 173:431-471.
  • 6Batchelor GK. Heat convection and buoyancy effects in fluids. Quarterly Journal of the Royal Meteorological Society, 1954, 80 (345): 339-358.
  • 7Morton BR, Taylor GI, Turner JS. Turbulent gravitational convec- tion from maintained and instantaneous sources. Proceedings of the Royal Society of London, 1956, A234:1-23.
  • 8Rouse H, Dodu J. Turbulent diffusion across a density discontinuity. La Houille Blanche, 1955, 4:522-532.
  • 9Turner JS. The influence of molecular diffusivity on turbulent en- trainment across a density interface. Journal of Fluid Mechanics, 1968, 33:639-656.
  • 10Ellison TH, Tumer JS. Turbulent entrainment in stratified flows. Journal of Fluid Mechanics, 1959, 6:423-447.

二级参考文献32

  • 1Sreenivasan K R, Meneveau C. The fractal facets of turbulence. J Fluid Mech, 1986, 173:357-386
  • 2Sreenivasan K R. Fractals and multifractals in fluid turbulence. Annu Rev Fluid Mech, 1991, 23:539-600
  • 3Turcotte D L. Fractals in fluid mechanics. Annu Rev Fluid Mech, 1988, 20:5-16
  • 4Takeno T, Murayama M, Tanida Y. Fractal analysis of turbulent premixed flame surface. Exp Fluid, 1990, 10: 61- 70
  • 5Lane-Serif G F. Investigation of fractal structure of jet and plumes. J Fluid Mech, 1993, 249:521-534
  • 6Frederiksen R D, Dahm W J A, Dowling D R. Experiment assessment of fractal scale-similarity in turbulent flows. Part 1: One-dimensional intersections. J Fluid Mech, 1996, 327:35-72
  • 7Frederiksen R D, Dahm W J A, Dowling D R. Experiment assessment of fractal scale-similarity in turbulent flows. Part 2: Higher-dimensional intersections and non-fractal inclusions. J Fluid Mech, 1997, 338:89-126
  • 8Frederiksen R D, Dahm W J A, Dowling D R. Experiment assessment of fractal scale-similarity in turbulent flows. Part 3: Multi-fractal scaling. J Fluid Mech, 1997, 338:127-155
  • 9Frederiksen R D, Dahm W J A, Dowling D R. Experiment assessment of fractal scale-similarity in turbulent flows. Part 4: Effects of Renolds and Schimdt numbers. J Fluid Mech, 1998, 377:169-187
  • 10Burton G C, Dahm W J A. Multifractal subgrid-scale modeling for large eddy simulation. Ⅰ. Model development and a priori testing. Phys Fluids, 2005, 17:075111

共引文献12

同被引文献39

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部