期刊文献+

翼型跨声速气动特性的不确定性及全局灵敏度分析 被引量:18

UNCERTAINTY QUANTIFICATION AND GLOBAL SENSITIVITY ANALYSIS OF TRANSONIC AERODYNAMICS ABOUT AIRFOIL
下载PDF
导出
摘要 针对马赫数和仰角的随机不确定性会导致气动性能波动的现象,采用非嵌入式的混沌多项式方法对绕NACA0012翼型跨声速随机气动特性进行不确定性及全局灵敏度分析.具体分析了飞行状态的不确定性对气动载荷分布、流场及气动力系数的影响并通过全局灵敏度分析找出重要因素.不确定性分析结果表明翼型上表面的激波以及激波后分离泡是造成气动性能剧烈波动的主要原因.灵敏度分析结果表明在跨声速区域马赫数对激波处气动性能影响最大,此外,虽然马赫数和仰角相互耦合作用对气动力系数贡献比较小,但对于激波位置处的流场,这种互耦合作用不可忽略. Considering the randomness of Mach number and angle of attack, the non-intrusive polynomial chaos method is employed to analyze the uncertainty and the corresponding global sensitivity indexes of transonic aerodynamics for the NACA0012 airfoil. In the paper, the uncertainty analysis and global sensitivity analysis about the aerodynamic loads, flow field and the aerodynamic coefficients are presented. The results of uncertainty analysis show that the flow characteristics in the shock disturbance region and the boundary-layer separation region are sensitive to the input uncertainties. This is the main reason for the aerodynamic performance fluctuations caused by parameter uncertainties. From the results of global sensitivity analysis, the fluctuations of flow characteristics near the shock wave region are dominated by Mach number. Moreover, the coupling effect between Mach number and angle of attack is significant and cannot be ignored in shock disturbance region. However, this coupling effect is very weak from the results of aerodynamic coefficients.
出处 《力学学报》 EI CSCD 北大核心 2015年第4期587-595,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 2013教育部"新世纪优秀人才支持计划"(NCET-13-0478) 国家自然科学基金(NSFC51308459) 中央高校基本业务费(310201401JCQ01014)资助项目)~~
关键词 随机气动特性 不确定分析 全局灵敏度 跨声速 多项式混沌 uncertainty analysis global sensitivity analysis transonic non-intrusive polynomial chaos stochastic aero-dynamic characteristic
  • 相关文献

参考文献22

  • 1Zang TA, Hemsch M J, Hilburger MW, et al. Needs and oppor- tunities for uncertainty-based multidisciplinary design methods for aerospace vehicle. NASA/TM-2002-211462, 2002.
  • 2Yao W, Chen XQ, Luo WC, et al. Review of uncertainty-based mul- tidisciplinary design optimization methods for aerospace vehicles. Progress in Aerospace Sciences, 2011, 47:450-479.
  • 3Jaekwon A, Kim I-IJ, Dong HL, et al. Response surface method for airfoil design in transonic flow. Journal of Aircraft, 2001, 38 (2): 231-238.
  • 4Armando V, Ning Q. Iterative response surface based optimization scheme for transonic airfoil design. Journal of Aircraft, 2007,44 (2): 365-376.
  • 5Leifur L, Slawomir K. Multi-fidelity design optimization of tran- sonic airfoils using physics-based surrogate modeling and shape- preserving response prediction. Journal of Computational Science, 2010, l: 98-106.
  • 6Li W, Huyse L, Padula S. Robust airfoil optimization to achieve consistent drag reduction over a mach range. NASA/CR-2001- 211042, 2001.
  • 7Padulo M, Maginot J, Guenov M. Airfoil design under uncertainty with Robust geometric parameterization. A1AA Paper 2009-2270, 2009.
  • 8Croicu AM, Hussaini MY, Jameson A, et ai. Robust airfoil optimiza- tion using maximum expected value and expected maximum value approaches. AIAA Journal, 2012, 50 (9): 1905-1919.
  • 9Padulo M, Campobasso MS, Guenov MD. Novel uncertainty propa- gation method for robust aerodynamic design. AIAA Journal, 2011, 49 (3): 530-543.
  • 10Sobol IM. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Mathematics and Comput- ers in Simulation, 2001, 55:271-280.

二级参考文献32

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:21
  • 2康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 3EU Project (Sixth Framework), Non-Deterministic Simulation for CFD-Based Design Methodologies (NODESIMCFD)[EB/OL]. [2009-03-11]. http://www.nodesim.eu/.
  • 4Zang T A, Hemsch M J, Hilburger M W, et al. Needs and Opportunities for Uncertainty Based Multidisciplinary Design Methods for Aerospace Vehicles [R]. Hampton, Va.: NASA Langley Res. Cent., 2002:1-53.
  • 5Najm H N. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics [J]. Annu. Rev. Fluid Mech., 2009, 41:35-52.
  • 6Wiener S. The Homogeneous Chaos [J]. Am. J. Math., 1938, 60:897-936.
  • 7Le Maitre O, Knio O, Najm H N, et al. A Stochastic Projection Method for Fluid Flow I. Basic Formulation [J]. J. Comput. Phys., 2001, 173:481-511.
  • 8Xiu D, Karniadakis G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM Journal of Sci. Comput., 2002, 24:619-644.
  • 9Xiu D, Karniadakis G E. Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos [J]. J. Comput. Phys., 2003, 187:137-167.
  • 10Lacro C, Smirnov S. Uncertainty Propagation in the Solution of Compressible Navier-Stokes Equations Using Polynomial Chaos Decomposition [C]//NATO AVT Symposium, Athens, 2007.

共引文献37

同被引文献157

引证文献18

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部