摘要
提出一种鲁棒的基于空间约束外点处理的图像非盲去卷积方法.借助马尔科夫随机场,构造图像邻域像素点的空间约束信息,对模糊图像的内点和外点分别建模,结合空间约束信息,提出一种新的估计潜在清晰图像的目标函数,并通过最大后验概率估计来求解潜在的清晰图像.该方法可以直接有效地利用EM(expectation-maximization)迭代算法来优化参数.实验结果表明,提出的方法有效、鲁棒,在抵抗噪声、亮度变化等方面表现出良好的性能.
A novel robust non-blind image deconvolution method based on handling outliers spatially constrained was proposed. Based on Markov random field, incorporating spatial constrained information between neighboring pixels for deconvolution. A novel objective function of underlying image estimating upon spatially constrained information was proposed, which explicitly took inlicrs and outliers into account. The most probable underlying image can be formulated as a maximum a posteriori estimation problem of the objective function. The proposed method could directly apply the EM (expectation-maximization) algorithm to optimize the parameters. Experimental results demonstrate that the proposed method is robust and effective, and shows good performance in noise resistance and brightness change.
出处
《湖北大学学报(自然科学版)》
CAS
2015年第4期359-363,共5页
Journal of Hubei University:Natural Science
基金
国家自然科学基金(61300125)资助
关键词
图像处理
非盲去卷积
外点处理
空间约束
image processing
non-blind deconvolution
handling outliers
spatial constraint