期刊文献+

线控制动系统踏板模拟器与制动感觉评价 被引量:6

Pedal simulator and braking feel evaluation in brake by wire system
下载PDF
导出
摘要 在分析传统液压制动系统踏板特性的基础上,以试验得到的踏板特性为目标,设计了以弹性元件和液压单元为基本模拟单元的踏板模拟器;分析了"制动感觉"指数(BFI)评价指标;以AMESim和Matlab/Simulink为仿真平台,建立踏板模拟器仿真模型并进行了仿真计算.计算结果表明,模拟器输出的踏板反力随踏板行程的增加而增大,其踏板特性能够跟随目标踏板特性而变化;改变弹性元件的刚度和液压缸的压力,可以得到不同的踏板特性;对3种不同弹簧刚度的模拟器"制动感觉"进行评价,BFI达到92.4分,具有良好的制动感觉;通过调整模拟器参数,可以适应不同的车型或满足不同的驾驶员需求. The pedal characteristic from experiments for target,a pedal simulator with elastic components and hydraulic unit as the basic simulation unit was designed,which based on the analysis on the pedal characteristics in traditional hydraulic braking system. The "breaking feeling"evaluation index was analyzed. The simulation model of pedal simulator was established by using AMESim and Matlab / Simulink. The pedal characteristic was simulated. The simulation results show that,the pedal reaction force increases with the increase of the pedal stroke,the pedal characteristics could be able to change following the target pedal characteristics;the different pedal characteristics could be obtained by changing the stiffness of elastic component and the pressure of hydraulic cylinder; the "breaking feeling"index was evaluated on three different simulators,and the maximum braking feel index value is 92. 4 points,which means a"good"brake feeling. The pedal characteristics could adapt to different vehicle or meet needs of different drivers by adjusting the parameters of simulator.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第6期989-994,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家"863"计划(2012AA111202) 北京市自然科学基金(3122024)
关键词 线控制动 踏板模拟器 踏板特性 制动感觉 评价 braking by wire pedal simulator pedal characteristics brake feel evaluation
  • 相关文献

参考文献15

  • 1李玉芳,吴炎花.电-液复合制动电动汽车制动感觉一致性及实现方法[J].中国机械工程,2012,23(4):488-492. 被引量:16
  • 2Jonner W D, Winner H, Dreilich L.Electro-hydraulic brake system-the first approach to brake-by-wire technology, 10.4271/960991[R].New York:SAE, 1996.
  • 3Nakamura E, Soga M, Sakai A.Developmentof electronically controlled brake system for hybrid vehicle, 10.4271/2002-01-0300[R].New York:SAE, 2002.
  • 4Kwon Y, Kim J, Cheon J, et al.Multi-objective optimization and robust design of brake by wire system components[J].SAE International Journal of Passenger Cars-Mechanical Systems, 2013, 6(3):1465-1475.
  • 5Ohkubo N, Matsushita S, Ueno M, et al.Application of electric servo brake system to plug-in hybrid vehicle[J].SAE International Journal of Passenger Cars-electronic and Electrical Systems, 2013, 6(1):255-260.
  • 6Dairou V, Priez A, Sieffemann J, et al.An original method to predict brake feel:A combination of design of experiments and sensory science, 2003-01-0598[R].New York:SAE, 2003.
  • 7Yang L J, Lee W, Hwang L Y.A model-based design analysis of hydraulic braking system[C]//SAE Technical Papers.Warrendale, PA:SAE International, 2003.
  • 8Okeyaa R, Aoyagia M, Takano T, et al.Development of electromagnetic and piezoelectric hybrid actuator system[J].Sensors and Actuators, A:Physical, 2013, 200(1):155-161.
  • 9Chen Q Z, Xu G J, Meng J, et al.Study on the brake pedal control model for regenerative braking integrated system[J].International Journal of Electric and Hybrid Vehicles, 2012, 4(3):289-296.
  • 10郑宏宇,宗长富,高越,朱天军,田承伟.线控制动系统的踏板力模拟研究[J].系统仿真学报,2008,20(4):1016-1019. 被引量:20

二级参考文献124

共引文献97

同被引文献39

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部