期刊文献+

Mn_3O_4催化臭氧化处理钻井废水 被引量:7

Treatment of drilling wastewater by Mn_3O_4 catalytic ozonation
原文传递
导出
摘要 采用锰系氧化物对钻井废水进行催化臭氧化处理,考察了不同初始pH、催化剂投加量以及臭氧投加量等因素对COD去除率的影响,探讨了Mn3O4表面电荷情况、化学吸附特性及催化臭氧产生·OH机理。结果表明,在初始pH为12,催化剂投加量为5g/L,臭氧投加量为18 mg/min,反应时间为20 min时,Mn3O4较Mn O2和单独臭氧氧化去除COD的效果更明显;Mn3O4的表面带负电荷,发生了水合羟基化过程,且Mn3O4与钻井废水中的污染物产生了化学吸附;臭氧与锰原子形成σπ-键合吸附于Mn3O4表面,经π*轨道能级的下降而进入活化状态,最终导致吸附于Mn3O4表面的OH-与臭氧相互作用产生·OH。 Treatment of drilling wastewater by catalytic ozonation with manganese oxi-des was investigated,the effects of initial pH,catalyst dosage,ozone dosage,etc.on COD removal efficacy were examined,and the Mn3O4 surface charge,chemical adsorption characteristics,mechanism of generating hydroxyl radicals(· OH)were also explored.The results indicated that under the optimal conditions of initial pH 12,catalyst dosage of 5 g /L,ozone dosage of 18 mg/min and reaction time of 20 min,compared with Mn O2 and ozonation,Mn3O4 was shown to perform best for COD degradation.The surface of Mn3O4 was negative charged,which led to the process of hydroxylation,furthermore,chemical absorption also happened due to the reaction between Mn3O4 and drilling wastewater pollutants.Ozoneand manganese atoms formed σπ-bond adsorbed on the su-rface of Mn3O4,by π* orbital dropping into the activated state,while the OH-adsorbed on the surface of Mn3O4,which eventually interacted with ozone to generate ·OH.
出处 《环境工程学报》 CAS CSCD 北大核心 2015年第7期3319-3324,共6页 Chinese Journal of Environmental Engineering
基金 油气藏地质及开发工程国家重点实验室开放基金资助项目(PLN1126) 大学生创新创业计划项目(KSZ1 3065)
关键词 催化臭氧化 Mn3O4p Hpzc红外光谱 机理 catalytic ozonation Mn3O4 pHpzc infrared spectroscopy mechanism
  • 相关文献

参考文献5

二级参考文献53

  • 1王广金,陈文梅,褚良银,周先桃,李艳,王枢.钻井污水处理工艺的实验研究[J].工业水处理,2004,24(10):17-20. 被引量:9
  • 2董里,李治国,史惠祥,周威明.2,4-二氯苯氧乙酸臭氧氧化动力学研究[J].环境污染与防治,2004,26(4):247-249. 被引量:7
  • 3卢培利,张代钧,曹海彬,刘海华.废水生物处理中的呼吸测量技术进展[J].重庆大学学报(自然科学版),2005,28(10):128-132. 被引量:4
  • 4Wang Y M, Yang M, Zhang J, et al. Improvement of biodegradability of oil field drilling wastewater using ozone[J]. Ozone: sci. eng. , 2004, 26:309-315.
  • 5Pillard D A, Cornell J S, Dufresne D L, et al. Research Note Toxicity of Benzotriazole and Benzotrizole Derivatives to Three Aquatic Species[J]. Wat Res, 2001, 35(2):557-560.
  • 6Stefan W, Thorsten R. Determination of Benzotriazole Corrosion Inhibitors from Aqueous Environmental Samples by Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry [J]. Anal Chem, 2005, 77(22): 7415-7420.
  • 7Giger W, Schaffner C, Kohler H E. Benzotriazole and Tolyltriazole as Aquatic Contaminants 1 Input and Occurrence in Rivers and Lakes [J]. Environ Sci Technol, 2006, 40(23):7186-7192.
  • 8Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in US Streams, 1999-2000: A National Reconnaissance [.I]. Environ Sci Technol, 2002, 36(6): 1202-1211.
  • 9Patsalides E, Robards K J. Rapid chromatographic determination of benzotriazoles in automotive cooling waters and cooling water formulations [ J]. Chromatography A, 1985, 331(1) : 149-160.
  • 10Cancilla D A, Baird J C, Geis S W, et al. Studies of the environmental fate and effect of aircraft deicing fluids: Detection of 5-methyl-lH-benzotriazole in the fathead minnow (Pimephalespromelas) [J] Environ Toxicol Chem, 2003, 22(1):134-140.

共引文献81

同被引文献62

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部