摘要
This paper develops a trigonometric-basis-fimction based Karhunen-Loeve (KL) expansion for simulating random earthquake excitations with known covariance functions. The methods for determining the number of the KL terms and defining the involved random variables are described in detail. The simplified form of the KL expansion is given, whereby the relationship between the KL expansion and the spectral representation method is investigated and revealed. The KL expansion is of high efficiency for simulating long-term earthquake excitations in the sense that it needs a minimum number of random variables, as compared with the spectral representation method. Numerical examples demonstrate the convergence and accuracy of the KL expansion for simulating two commonly-used random earthquake excitation models and estimating linear and nonlinear random responses to the random excitations.
This paper develops a trigonometric-basis-fimction based Karhunen-Loeve (KL) expansion for simulating random earthquake excitations with known covariance functions. The methods for determining the number of the KL terms and defining the involved random variables are described in detail. The simplified form of the KL expansion is given, whereby the relationship between the KL expansion and the spectral representation method is investigated and revealed. The KL expansion is of high efficiency for simulating long-term earthquake excitations in the sense that it needs a minimum number of random variables, as compared with the spectral representation method. Numerical examples demonstrate the convergence and accuracy of the KL expansion for simulating two commonly-used random earthquake excitation models and estimating linear and nonlinear random responses to the random excitations.