期刊文献+

基于云计算技术的个性化推荐系统 被引量:24

Personalization recommender system based on cloud-computing technology
下载PDF
导出
摘要 传统的协同过滤推荐技术在大数据环境下存在一定的不足。针对该问题,提出了一种基于云计算技术的个性化推荐方法:将大数据集和推荐计算分解到多台计算机上并行处理。在对经典Item CF算法Map Reduce化后,建立了一个基于Hadoop开源框架的并行推荐引擎,并通过在已商用的英语训练平台上进行学习推荐工作验证了该系统的有效性。实验结果表明,在集群中使用云计算技术处理海量数据,可以大大提高推荐系统的可扩展性。 Traditional collaborative filtering recommendation technology works poor under the environment of bigdata.To solve this problem,a personalized recommendation method based on cloud-computing technology is proposed.In this method,the large dataset and recommended calculation will be decomposed into multiple computers for parallel processing.It uses the open source framework Hadoop to establish a parallel recommendation engine on the basis of the classical Item CF algorithm with Map Reduce technology.The effectiveness of this system has already been verified on English training platforms by recommending learning resources.Experimental results indicate that the use of cloud-computing technology in the cluster to process massive data can significantly improve the scalability of Recommender Systems.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第13期111-117,共7页 Computer Engineering and Applications
基金 横向课题"智能英语语言训练系统" 江苏省电力公司科技项目(No.J2014057) 江苏省高等学校软件服务外包类专业嵌入式人才培养项目(苏教高函[2014]8号) 江苏省卓越工程师(软件类)计划试点专业项目(苏教高函[2012]17号) 三江大学本科工程二期项目(No.J14001)
关键词 推荐系统 基于物品的协同过滤 Map REDUCE ITEM CF-MR算法 学习资源推荐 recommender systems item-based collaborative filtering Map Reduce Item CF-MR algorithm learning resources recommend
  • 相关文献

参考文献21

  • 1李国杰.大数据研究的科学价值[J].中国计算机学会通讯,2012,8(9):8-15.
  • 2IDC发布最新《数字宇宙研究报告》[EB/OL].[2014-05-15].http://www.ecas.cn/xxkw/kbcd/201115_93655/ml/xxhjsyjcss/201212/t20121229_3730152.html.
  • 3Resnick P,Varian H R.Recommender systems[J].Communications of the ACM,1997,40(3):56-58.
  • 4Goldberg D,Nichols D,Oki B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70.
  • 5Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web.[S.l.]:ACM,2001:285-295.
  • 6Linden G,Smith B,York J.Amazon.com recommendations:Item-to-item collaborative filtering[J].Internet Computing,2003,7(1):76-80.
  • 7Shang M S,Jin C H,Zhou T,et al.Collaborative filtering based on multi-channel diffusion[J].Statistical Mechanics and its Applications:Physica A,2009,388(23):4867-4871.
  • 8Dakhel G M,Mahdavi M.A new collaborative filtering algorithm using K-means clustering and neighbors’voting[C]//Proceedings of the 11th International Conference on Hybrid Intelligent Systems(HIS).[S.l.]:IEEE,2011:179-184.
  • 9Mittal N,Nayak R,Govil M C,et al.Recommender system framework using clustering and collaborative filtering[C]//Proceedings of the 3rd International Conference on Emerging Trends in Engineering and Technology(ICETET).[S.l.]:IEEE,2010:555-558.
  • 10Sarwar B,Karypis G,Konstan J,et al.Application of dimensionality reduction in recommender system-A case study[R].Minnesota Univ Minneapolis Dept of Computer Science,2000.

二级参考文献47

共引文献597

同被引文献202

引证文献24

二级引证文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部