期刊文献+

辅助增量粒子滤波方法

Auxiliary incremental particle filter method
下载PDF
导出
摘要 提出辅助增量粒子滤波方法并给出其算法过程。该方法将增量形式融入辅助变量粒子滤波中,解决由于工程实际中量测可能存在未知系统误差导致无法精确建立量测似然函数的问题,另一方面,其又能保持辅助变量粒子滤波方法的优势,在选取重要性密度函数上有效利用最新观测的信息。该方法能减少重采样次数,较好保持粒子的多样性,使得非线性滤波的精度得以提高。仿真实验结果表明,辅助增量粒子滤波方法能有效减少非线性滤波问题的误差,相对经典滤波方法的滤波精度提高了50%。 An auxiliary incremental particle filter method is proposed,while the algorithm process is established.The method can integrate increment form into the auxiliary particle filtering.It can solve the problem of unsetting up the accurate measurement likelihood function due to the unknown system errors in the practical engineering.On the other hand,the advantage of the auxiliary particle filtering which can select the important density function effectively by using the latest observation information is remained.This method decreases the numbers of resample obviously,preserves the diversity of the particle effectively and improves the accuracy of nonlinear filtering.Simulation results show that the method of auxiliary incremental particle filter can reduce the errors of nonlinear filtering effectively and increase the filtering accuracy by50% compared to classical methods.
作者 熊炳忠
出处 《计算机工程与应用》 CSCD 北大核心 2015年第13期225-229,共5页 Computer Engineering and Applications
基金 浙江省教育厅科研项目资助(No.Y201431319) 嘉兴学院教改重点课题(No.85151316)
关键词 增量粒子滤波 辅助变量粒子滤波 辅助增量粒子滤波 滤波精度 incremental particle filter auxiliary particle filter auxiliary incremental particle filter filtering accuracy
  • 相关文献

参考文献13

  • 1Maccorick J,Maccorick F.Stochastic algorithms for visual tracking[M].New York:Telos Press,2003:78-96.
  • 2Del Moral P,Doucet A,Jasra A.Sequential Monte Carlo samples[J].Journal of Royal Statistical Society B,2006,68(3):411-436.
  • 3傅惠民,吴云章,娄泰山.欠观测条件下的增量Kalman滤波方法[J].机械强度,2012,34(1):43-47. 被引量:26
  • 4傅惠民,娄泰山,吴云章.欠观测条件下的扩展增量Kalman滤波方法[J].航空动力学报,2012,27(4):777-781. 被引量:17
  • 5傅惠民,娄泰山,吴云章.增量粒子滤波方法[J].航空动力学报,2013,28(6):1201-1207. 被引量:9
  • 6傅惠民,吴云章,娄泰山.自适应增量粒子滤波方法[J].航空动力学报,2013,28(8):1764-1768. 被引量:5
  • 7Gordon N J,Salmond D J,Smimsh A F M.Novel approach to non-linear and non-Gaussian Bayesian state estimation[J].Proceedings of Insitute Electric Engineering,1993,140(2):107-113.
  • 8Doucet A,de Freitas J F G,Gordon N J.Sequential Monte Carlo Methods in Practice[M].New York,Springer-Verlag,2001:247-272.
  • 9Pitt M K,Shephard N.Filtering via simulation:Auxiliary particle filters[J].Journal of the American Statistical Association,1999,94:590-599.
  • 10Doucet A,Johansen A.A note on auxiliary particle filters[J].Statistics Probability Letter,2008,78(12):1498-1504.

二级参考文献61

  • 1金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69. 被引量:82
  • 2Kalman R E. A new approach linear filtering and prediction problems [ J ]. Journal of Basic Engineering ( ASME), 1960, 82D :35-45.
  • 3Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion[ J]. Oki Technical Review, 1997, 63(159) : 1-12.
  • 4Julier S J, Uhlmann J K. Unscented fihering and nonlinear estimation [ J ]. Proceedings of the IEEE, 2004, 92 ( 3 ) : 401-423.
  • 5Sage A P, Husa G W. Adaptive filtering with unknown prior statistics [ C ]. Joint American Control Conference. Boulder: Colorado, 1969: 769-774.
  • 6Pitt M, Shephard N. Filtering via simulation: auxiliary particle filters[J]. Journal of the American Statistical Association, 1999, 94 (446) : 590-599.
  • 7秦永元,张洪钺,汪淑华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2010:33-48.
  • 8Fujimoto O, Okita Y, Ozaki S. Nonlinearity compensation extended Kalman filter and its application to target motion [J]. Oki Technical Review, 1997,63(159) : 1-12.
  • 9Kubota T, Hashimoto T, Kawaguchi J, et al. Navigation guidance and control of asteroid sample return spacecraft : MUSES[C]//Proceedings 4th ESA International Conference on Spacecraft Guidance Navigation and Control Systems. Noordwijk: ESTEC, 2000 : 511-516.
  • 10Tuckness D G, Young S Y. Autonomous navigation for Lunar Trans[J]. Journal of Spacecraft and Rockets, 1995, 32(2): 279-285.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部