期刊文献+

New Abundant Exact Solutions For Kundu Equation 被引量:1

New Abundant Exact Solutions For Kundu Equation
原文传递
导出
摘要 In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach. In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第3期729-734,共6页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11361048)
关键词 Kundu equation generalized auxiliary equation method solitary wave Kundu equation generalized auxiliary equation method solitary wave
  • 相关文献

参考文献7

  • 1Agrawal, G.P. Nonlinear Fiber Optics (4th ed.) Academic Press, San Diego, 2007.
  • 2Emmanuel Yomba. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations. Physics Letters A, 372:1048- 1060 (2008).
  • 3Zhang, W.G., Qin, Y.H., Zhao, Y., Guo, B.L. Orbital stability of solitary waves for Kundu equation. J. Differential Equations, 247:1591-1615 (2009).
  • 4Biswas, A. Optical solitons; quasi-stationarity versus Lie transform. Opt. Quantum Electron. 35:979-998 (2003).
  • 5Houria, T., Thiab, R. Exact analytic solitary wave solutions for the RKL model. Mathematics and Computers in Simulation, 80:849-854 (2009).
  • 6Radhakrishnan, R., Kundu A., Lakshmanan, M. Coupled nonlinear SchrSinger equations with eubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media. Phys. Rev. E, 60:3314-3323 (1999).
  • 7Kundu, A. Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schroinger- type equation. 3. Math. Phys., 25:3433-3436 (1984).

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部