期刊文献+

Two-Particle Boltzmann H-theorem

Two-Particle Boltzmann H-theorem
原文传递
导出
摘要 The celebrated H-theorem of Boltzmann has important physical significance. The H-theorem states that entropy cannot diminish, and that the distribution function f(z, t) must tend towards its equilibrium state.In this paper, using the relationship between solutions of Boltzmann equation and the two-particle Boltzmann equation system, we obtain three forms of Two-Particle Boltzmann H-theorem from the two-particle Boltzmann equation system of BBGGKY hierarchy, and give an application example for the Two-Particle Boltzmann H-theorem. Also, the relation between entropy and the Two-Particle Boltzmann H-theorem is obtained. The celebrated H-theorem of Boltzmann has important physical significance. The H-theorem states that entropy cannot diminish, and that the distribution function f(z, t) must tend towards its equilibrium state.In this paper, using the relationship between solutions of Boltzmann equation and the two-particle Boltzmann equation system, we obtain three forms of Two-Particle Boltzmann H-theorem from the two-particle Boltzmann equation system of BBGGKY hierarchy, and give an application example for the Two-Particle Boltzmann H-theorem. Also, the relation between entropy and the Two-Particle Boltzmann H-theorem is obtained.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第3期747-756,共10页 应用数学学报(英文版)
基金 Supported by Natural Science Foundation of Inner Mongolia Autonomous Region of china(Grant No.2015MS0110) the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant No.NJZY14276)
关键词 two-particle Boltzmann system two-Particle Boltzmann H-theorem Boltzmnnn H-theorem entropy two-particle Boltzmann system two-Particle Boltzmann H-theorem Boltzmnnn H-theorem entropy
  • 相关文献

参考文献1

二级参考文献12

  • 1H. Grad, Long Time Prediction in Dynamics, ed. C.W. Horton Jr., L.E. Reichl, and V.G. Szebehely, Publisher: Wiley-Interscience, New York (1983).
  • 2K. Sagara and S. Tsug~, Phys. Fluids 25 (1982) 1970.
  • 3v Chen Jian-Nings, Acta Mathematica Scientia 10 (1990) 259.
  • 4A.V. Bobylev and I.M. Gamba, J. Stag. Phys. 124 (2006) 497.
  • 5A.V. Bobylev and C. Cercignani, J. Stat. Phys. 106 (2002) 1019.
  • 6A.V. Bobylev and C. Cercignani, J. Stat. Phys. ii0 (2003) 333.
  • 7A.V. Bobylev, C. Cercignani, and G. Toscani, J. Star. Phys. 111 (2003) 403.
  • 8A.V. Bobylev, C. Cercignani, and I.M. Gamba, Commun. Math. Phys. 291 (2009) 599.
  • 9E.H. Huge and E. Pra~stgaard, J. Stat. Phys. 24 (1981) 21.
  • 10A.V. Bobylev, Teoret. Mat. Fiz. 60 (1984) 280.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部