期刊文献+

Travelling Wave Solutions of Integro-differential Equations of One-dimensional Neuronal Networks

Travelling Wave Solutions of Integro-differential Equations of One-dimensional Neuronal Networks
原文传递
导出
摘要 Travelling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing(decreasing) Travelling wave solutions are established. Some faults in previous studies are corrected. Travelling wave solutions of integro-differential equations for modeling one-dimensional neuronal networks, are studied. Under moderate continuity assumptions, necessary and sufficient conditions for the existence and uniqueness of monotone increasing(decreasing) Travelling wave solutions are established. Some faults in previous studies are corrected.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第3期767-782,共16页 应用数学学报(英文版)
基金 supported in part by the Natural Sciences and Engineering Research Council of Canada
关键词 travelling wave solution neuronal network integral-differential equation travelling wave solution neuronal network integral-differential equation
  • 相关文献

参考文献17

  • 1Arnold, V. Ordinary Differential Equations. The MIT Press, Cambridge, 1973.
  • 2Ermentrout, G.B. Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys., 61: 353-430 (1998).
  • 3Ermentrout, G.B., Terman, D.H. Mathematical Foundations of Neuroscience. Springer-Verlag, New York, 2010.
  • 4Enculescu, M. A note on Travelling fronts and pulses in a firing rate model of a neuronal network. Physica D: Nonlinear Phenomena., 196:362-386 (2004).
  • 5Guckenheimer, J., Holmes, P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.
  • 6Izhikevich, E.M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge, 2007.
  • 7Lv, G., Wang, M. Travelling waves of some integral-differential equations arising from neuronal networks with oscillatory kernels. J. Math. Anal Applic., 370:82 -100 (2010).
  • 8Osan, R., Rubin, J., Curtu, R., Ermentrout, G.B. Travelling waves in a one-dimensional integrate-and-fire neural network with finite support connectivity. Neurocomputing, 52-54:869-875 (2003).
  • 9Osan, R., Rubin, J., Ermentrout, G.B. Regular Travelling waves in a one-dimensional network of theta neurons. SIAM J. Appl. Math., 62:1197-1221 (2002).
  • 10Roquejoffre, J.M., Terman, D.H. The asymptotic stability of a Travelling wave solution arising from a combustion model. Nonlinear Anal., 22:137-154 (1994).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部