期刊文献+

电信运营商官方微博影响力评价研究——基于30个电信运营商官方微博影响力的实证研究 被引量:1

Study on the Influence Evaluation of Official Micro Blog of Telecom Operators——An Empirical Study Based on 30 Telecom Operator Micro- blog Accounts
下载PDF
导出
摘要 微博依靠其较强的信息扩散能力成为众多企业进行线上营销的主要渠道。较高的微博影响力水平对企业营销信息的推广传播具有一定的推动作用,而电信运营商的官方微博尚存在影响力较为欠缺的情况。本文首先通过文献研究、因子分析等方法归纳聚合出3个微博影响力的主要因素,据此构建了微博影响力评价指标体系。因子分析的结果表明微博账号的信息传播能力对微博影响力的方差贡献率最高,其次为账号活跃度。最后,本文基于因子得分对30个电信运营商官方微博的影响力进行实证分析,分别计算得出各微博账号的指标因子得分及影响力综合得分。依据得分情况对各电信运营企业提出具体的微博影响力提升策略。 Micro- blog has rapidly gained worldwide popularity and has grown into a major method for commercial promo- tion for most of the companies in china, An influential micro - blog can spread information more efficiently. However, most of the telecom operators' micro - blog accounts lack of such influence. The present study built an influence evaluation system of telecom operators' micro - blog based on the data of 200 micro - blog accounts with the method of factor analysis, and applied to 30 tele- corn operators micro - blog accounts, the results verified the scientific and practical implication of the influence evaluation system, which could be used by the telecom operators to promote their micro - blog influence and eventually propagate their products. This study put forward some specific strategies according to the results.
作者 曾剑秋 张冉
出处 《现代情报》 CSSCI 北大核心 2015年第7期62-67,共6页 Journal of Modern Information
关键词 微博影响力 电信运营商 因子分析 指标体系 influence of micro- blog influence evaluation system telecom operators factor analysis
  • 相关文献

参考文献8

二级参考文献40

  • 1李爱梅,凌文辁,方俐洛,肖胜.中国人心理账户的内隐结构[J].心理学报,2007,39(4):706-714. 被引量:89
  • 2Patricia SendalI, Wcndy Ceccucci, Alan R Pcslak. Got Web 2.0? A review of Web 2.0 tools for the information systems curriculum [ J]. Information Systems Education Journal, 2010, 8(28) :1-14.
  • 3GigaTweet. Counting the number of tweets[ EB/OL ]. http:// popacular, com/gigatwect, 2010 August.
  • 4Carmen Holotcscu, Gabriela Orosscck. Using rnicroblogging in education case study: Cirip. ro[ C]. 6th International Conference one-Learning, 2009.
  • 5Shen Yang, Li Shu-chen, Ye Xiao-xiao, et al. Content mining and network analysis of microblog spare [J]. Journal of Convergence Information Technology, 2010, 5 ( 1 ) : 135-140.
  • 6Hong Liang-jie, Brian D Davison. Empirical study of topic modeling in twitter[ C]. Proceedings of the SIGKDD Workshop on Social Media Analytics (SOMA) at KDD, 2010.
  • 7Barabasi A-L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439) : 509-512.
  • 8Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[ J]. Nature, 1998, 393 : 440-442.
  • 9Saaty T L. Theory and applications of the analytic network process [M]. Pittsburgh: RWS Publications, 2005.
  • 10Saaty T L. Decision making with the analytic hierarchy process [J]. International Journal of Services Sciences,2008,1 ( 1 ) :83-98.

共引文献59

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部