期刊文献+

环上某些2×2块阵的Drazin逆

The Drazin inverses of some 2 × 2 block matrices over rings
下载PDF
导出
摘要 令R是有1的结合环,Rm×n是R上所有m×n矩阵的集合,若正整数k及A∈Rn×n,满足方程组Ak+1X=Ak,XAX=X,AX=XA,则称X为A的Drazin逆,当k=1时,A#=AD被称为A的群逆。在一般环上研究此问题,给出环上三类2×2块阵的Drazin逆的存在性条件及表示。 Let R be an associative ring with 1, R^m×n be the sets of all the m×n matrices over R, for the positive integer k and the matrix A in R^n×n , matrix X is called the Drazin inverse of A if X satisfies the equations, A^k+1X = A^k, XAX = X and AX = XA. Denote A^# = A^D when k = 1 , and A^# is called the group inverse of A. The existence conditions and the representation of Drazin inverse for three class of 2 × 2 block matrices over rings are given.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第3期349-351,共3页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科学技术研究项目(12541829) 佳木斯大学科学技术面上项目(L2014-011)
关键词 块阵 DRAZIN逆 ring block matrix Drazin inverse
  • 相关文献

参考文献8

  • 1CAMPBELL S L, MEYER C D. Generalized inverses of linear transformations[ M ]. Philadephia: Society for Industrial and Applied Mathematics, 1991.
  • 2HARTWIG R E, SHOAF J. Group inverses and Drazin inverses of bidiagonal and triangular Toeqlitz matrices[ J]. Journal of the Australian Mathe- matical Society (Series A), 1977, 24(1) : 10 -34.
  • 3DENG C Y, WEI Y M. A note on the Drazin inverse of an anti-triangular matrix[ J ]. Linear Algebra and its Applications, 2009, 431 (10) : 1910 - 1922.
  • 4刘玉,曹重光.体上某些分块矩阵的Drazin逆(英文)[J].黑龙江大学自然科学学报,2004,21(4):112-114. 被引量:8
  • 5CATRAL M, OLESKY D D, VAN DEN DRIESSCHE P. Block representations of the Drazin inverse of a bipartite matrix[J]. Electronic Journal of Linear Algebra, 2009, 18 : 98 - 107.
  • 6PATRI P, HARTWIC R E. Some additive results on Drazln inverses [ J ]. Applied Mathematics and Computation, 2009, 215 (2) : 530 - 538.
  • 7BU C J, FENG C C, BAI S Y. Representations for the Drazin inverses of the sum of two matrices and some block matrices [J]. Applied Mathemat- ics and Computation, 2012, 218(20) : 10226 - 10237.
  • 8RAO K P S B. The theory of generalized inverses over commutative rings[M]. New York: Taylar and Francis, 2002.

二级参考文献1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部