期刊文献+

基于正交实验的生物慢滤池水质净化效果的研究 被引量:2

THE PURIFICATION EFFECT OF WATER QUALITY BY BIOLOGICAL SLOW FILTER BASED ON ORTHOGONAL EXPERIMENT
下载PDF
导出
摘要 生物慢滤池具有菌-藻共生的特性。以滤层厚度、上覆水深、滤速、氮磷比及有无藻类生长等5个因素设计混合正交实验,以TN和TP的去除效果为指标,通过优化运行参数,得到生物慢滤池(BSF)优化运行工况。结果表明,滤层厚度对TN去除效果影响显著,上覆水深和氮磷比对TN去除效果影响较为显著;有无藻类生长和氮磷比对TP去除效果影响显著。在考虑单因素和显著性影响条件下,得到BSF去除氮磷的优化工况为:在有藻状态下,水深为80 cm,滤层厚度为80 cm,进水m(N):m(P)为20:1,滤速为0.1 m/h;在此工况下,出水的TN和TP含量均低于GB18918-2002的一级A标准,且无外加碳源和除磷药剂,出水可作为景观环境用水,节约了水资源,降低了处理成本。 Biological slow filter has the characteristic of bacteria and algae symbiosis. Five factors of biological slow filter system including the filter layer thickness, upper water depth, filter velocity, the ratio of nitrogen and phosphorus and the presence of algae, mixed orthogonal experiments were designed with removal effect of TN and TP as index to optimize the operation parameters. The results showed that the removal efficiency of TN the filter layer thickness as well as water depth and the ratio of nitrogen and phosphorus. The removal rates of TP were also significantly affected by the presence of algae and the ratio of nitrogen and phosphorus. Considering individual factor and significance simultaneously, it was concluded that the best conditions of the biological slow sand filtration to remove nitrogen and phosphorus were as following: in the presence of algae, the water depth was 80 cm, the thickness of filter layer was 80 cm, the m(N):m(P) was 20:1 and filter velocity was 0.1 m/h. In this condition, the effluent TN and TP were lower than A standard of level 1 in the OB 18918-2002. Furthermore, with no external carbon source and medicament for removing phosphorus, water resources were saved and the treatment cost was reduced while effluent could be regarded as water for landscape environment.
出处 《水处理技术》 CAS CSCD 北大核心 2015年第7期72-75,共4页 Technology of Water Treatment
基金 陕西省水利科技计划项目(2013-09) 陕西省教育厅基金项目(12JK0648)
关键词 正交实验 生物慢滤池 参数优化 藻菌共生系统 orthogonal experiment biological slow filter parameter optimization algal-bacterlal symbiotic system
  • 相关文献

参考文献19

  • 1胡洪营,吴乾元,黄晶晶,等.再生水水质安全评价与保障原理[M].北京:科学出版社,2011.
  • 2Lwasv N, Kinoshita S, Kojima M, et al. Role of algal growth and photosynth0sis in slow sand filters for an advanced wastewater trcatmcnt [M]//R Gimbel, N J D Grahanl, M R Collins. Recent progress in slow sand and alternative bilfiltration processes.London:IWA Publishing, 2006:60-67.
  • 3中本信忠.安全应用水生物净化法指南[M].北京:科学出版社,2010.
  • 4Malzer H J, Gimbel R. Protection layers for the extension of slow sand filter running times in wastewater reuse [J].Water Science and Technology:Water Supply,2006,6(1): 105-111.
  • 5R Axonino, C Dlugy, E Arkhangelsky, et al. Removal of viruses from surface water and secondary effluents by sand filtration [J]. Water Rosearch,2009,43: 87-96.
  • 6Zhong X, Ernst M, Jekel M. Pilot-scale investigation on the removal of organic foutants in secondary effluent by slow sand filtration prior to ultrafiltration[J1.Water Res,2010.44:3203-3213.
  • 7刘来胜,周怀东,刘玲花,吴雷祥.生物慢滤技术脱氮性能试验研究[J].中国农村水利水电,2013(5):81-84. 被引量:4
  • 8刘来胜,周怀东,刘玲花,吴雷祥.生物慢滤技术中的微生物作用研究[J].中国水利水电科学研究院学报,2013,11(2):137-143. 被引量:9
  • 9曹相生,刘杰,孟雪征,曲庆国.滤层厚度对慢滤池深度处理污水的性能影响[J].生态环境学报,2010,19(3):566-569. 被引量:10
  • 10曹相生,刘杰,孟雪征,王玥.滤速对慢滤池深度处理生活污水的影响[J].生态环境学报,2010,19(8):1947-1950. 被引量:9

二级参考文献58

  • 1胡洪营,吴乾元,黄晶晶,黄璜,赵欣.城市污水再生利用安全保障体系与技术需求分析[J].水工业市场,2010(8):8-12. 被引量:14
  • 2曾凡亮,罗先桃.分光光度法测定水样的色度[J].工业水处理,2006,26(9):69-72. 被引量:42
  • 3孙铁珩,蒋侃,孙丽娜,王书文,李海波.污水处理和回用技术的应用:中水回用在沈阳的发展前景和存在的问题[J].应用生态学报,2006,17(12):2441-2444. 被引量:29
  • 4康永滨,叶燕群,陈安芬.生物慢滤水处理技术在闽北农村安全饮水中的应用[J].中国水利,2007(10):122-123. 被引量:6
  • 5ELLIS K V, AYDIN M E. Penetration of solids and biological activity into slow sand filters[J]. Water Research, 1995, 29: 1333-1341.
  • 6DIBERNARDO L, ALCOCER CARRASCO N E. Variable versus constant supematant water layer in slow sand filtration[C]//GRAHAM N, COLLINS R. Advances in slow sand and alternative biological filtration. London: IWA Publishing, 1996.
  • 7DOREA C C, CLARKE B A. Chemically enhanced gravel pre-filtration for slow sand filters: advantages and pitfalls[J]. Water Science and Technology: Water Supply, 2006, 6(1): 121-128.
  • 8AWWA, ASCE. Water Treatment Plant Design[M]. 4th edition. Texas: McGRAW-HILL, 2005.
  • 9IWASE N, KINOSHITA S, KOJIMA M, et al. Role of algal growth and photosynthesis in slow sand filters as an advanced wastewater treatment[C]//GIMBEL R, NIGEL, GRAHAM J D, et al. Recent pro- gress in slow sand and alternative biofitration processes. London: IWA Publishing, 2006: 60-67.
  • 10NAKHLA G, FAROOQ S. Simultaneous nitrification-denitrification in slow sand filters[J]. Journal of Hazardous Materials, 2003, B96:291-303.

共引文献328

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部