期刊文献+

pH敏感凝胶平衡溶胀的有限元研究 被引量:1

A Finite Element Method for Equilibrium Swelling Analysis of pH-Sensitive Hydrogel
下载PDF
导出
摘要 1943年Flory提出第一个凝胶溶胀理论以来,凝胶溶胀理论的发展极大地促进了凝胶科学的发展.在诸多凝胶溶胀理论中,Flory-Rehner凝胶溶胀理论是最为经典的理论之一,成功地预测了聚合物胶体的诸多溶胀变形特性.但该模型是基于一种最为简单的自由连接链模型,存在精度较差的局限.因此,本文采用能够表征网络缠结拓扑等微观结构影响的弹性自由能模型,即由Edwards-Vilgis提出的Slip-Link模型,构造自由能模型并形成pH敏感凝胶的平衡溶胀理论,并基于Abaqus有限元分析了微观结构及几何限制作用对pH敏感凝胶力学行为的影响.分析结果可为微流体控制阀的设计提供参考. Since the first gel swelling theory was put forward by Flory in 1943, the development of the gel swelling theories has tremendously improved the science and technology of the Sol-Gel. Among these gel swelling theories, Flory-Rehner gel swelling theory is one of the most classic theories. The characteristics of get swelling deformation are well predicted from the gel swelling theory. However, the model is based on the simple assumption of free link chain and has the limitation of low computational accuracy. Therefore, the elastic free energy model, namely Slip-Link model developed by Edwards-Vilgis, was introduced in the paper. And this model is able to reflect the network topological microstructure such as entanglement. The equilibrium swelling theory of pH-sensitive hydrogel was developed, and a finite element method in the commercial software Abaqus was implemented, to analyze effects of microstructure and geometrical constraints on the mechanical behaviors of pH sensitive gel. The results can provide reference for the design of the micro-fluid control valve.
出处 《力学季刊》 CSCD 北大核心 2015年第2期221-231,共11页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(11272237) 福建省教育厅A类项目(JA12308)
关键词 pH敏感凝胶 溶胀理论 凝胶自由能 Slip-Link模型 有限元 pH-sensitive hydrogel swelling theory free energy of gel Slip-Link model finite element method
  • 相关文献

参考文献16

  • 1PEPPAS N A, BURES P, LEOBANDUNG W, et al. Hydrogels in pharmaceutical formulations[J]. European Journal of Pharmaceutics Biopharmaceuties, 2000, 50(1):27-46.
  • 2SERSHEN S R, WESTCOTT S L, HALAS N J, et al. Independent optically addressable nanoparticle-polymer optomechanical composites[J]. Applied Physics Letter, 2002, 80(24):4609-4611.
  • 3GRODZINSKI J J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications[J]. Polymers for Advanced Technologies, 2010, 21 (1):27-47.
  • 4FLORY P J, REHNER J. Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity[J]. Journal of Chemical Physics, 1943, 11(I 1):512-520.
  • 5FLORY P J, REHNER J. Statistical mechanics of cross-linked polymer networks. II. Swelling[J]. Journal of Chemical Physics, 1943, 11(11):521-526.
  • 6EDWARDS S F, VILGIS T A. the effect of entanglements in rubber elasticity[J]. Polymer, 1986, 27(4):483-492.
  • 7HONG W, LIU Z S, SUO Z G. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load[J]. International Journal of Solids and Structttres, 2009, 46(17):3282-3289.
  • 8MARCOMBE R, CAI S Q, SUO Z G, et al. A theory of constrained swelling of a pH-sensitive hydrogel[J]. Soft Matter, 2010, 6:784-793.
  • 9YAN H X, JIN B. Influence of microstructural parameters on mechanical behavior of polymer gels[J]. International Journal of Solids and Structures, 2012, 49:436-444.
  • 10YAN H X, JIN B. Equilibrium swelling of a polyampholytic pH-sensitive hydrogel[J]. The European Physical Journal E, 2013, 36:27.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部