期刊文献+

塑晶基离子液体合成及其电化学性能 被引量:1

Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid
下载PDF
导出
摘要 通过简单、易于工业化的重结晶方法制备了高纯1-甲基-1-乙基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(P12TFSI)塑晶化合物.在此化合物中加入30%(摩尔分数,x)双(氟磺酰)亚胺锂(Li FSI)后,得到P12TFSI/Li FSI塑晶基离子液体.采用循环伏安法、恒电压极化法及恒电流充放电法等电化学方法考察了该离子液体的电化学窗口、铝箔集流体的腐蚀性及电池性能.结果表明,该离子液体电解质具有5.00 V的电化学窗口,室温离子电导率达到0.92 m Scm-1,且不腐蚀Al集流体.以该塑晶离子液体作为电解液组装的实验电池Li Co O2/Li表现出良好的充放电特性及循环性能,在较低倍率下能够和使用碳酸酯类电解液组装的实验电池的性能相媲美.在4.50 V高电压下,循环20周后,容量仍能保持在175 m Ahg-1,容量保持率为95.1%.这些结果说明该离子液体在高性能锂二次电池中具有良好的应用前景. Highly pure plastic crystal, 1-ethyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (P12TFSI), was synthesized and purified by an easily industrializable recrystal ization method. The P12TFSI/LiFSI ionic liquid was obtained by mixing P12TFSI with 30%(molar fraction, x) LiFSI. Electrochemical characterization methods including cyclic voltammetry, constant voltage polarization and charge/discharge at constant current were used to investigate the electrochemical window, stability vs Al corrosion, and battery performance of the ionic liquid. A wide electrochemical window of 5.00 V, non-corrosion of the Al current col ector, and 0.92 mS?cm-1 of ionic conductivity at room temperature were observed. LiCoO2/Li batteries assembled using this ionic liquid electrolyte showed good charge-discharge characteristics and cycle performance, comparable with those of carbonate-based electrolyte at low rate. The specific capacity of the LiCoO2 remained 175 mAh?g-1 after 20 cycles (95.1%capacity retention) despite cycling at a high voltage up to 4.50 V. These results indicate that the plastic crystal-based ionic liquid P12TFSI/LiFSI could be potential y applied in high-energy density lithium secondary batteries.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第7期1351-1358,共8页 Acta Physico-Chimica Sinica
关键词 锂离子电池 塑晶 离子液体 吡咯烷鎓 高电压 Lithium ion battery Plastic crystal Ionicliquid Pyrrolidinium High voltage
  • 相关文献

参考文献28

  • 1Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126~science. 1212741.
  • 2Armand, M.; Tarascon, J. M. Nature 2008, 451,652. doi: 10.1038/451652a.
  • 3Samad, Y. A.; Asghar, A.; Hashaikeh, R. Renewable Energy 2013, 56, 90. doi: 10.1016/j.renene.2012.09.015.
  • 4任祥忠,刘涛,孙灵娜,张培新.锂离子电池正极材料Li_(1.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)Zr_xO_2的制备及电化学性能[J].物理化学学报,2014,30(9):1641-1649. 被引量:8
  • 5薛庆瑞,李建玲,徐国峰,侯朋飞,晏刚,代宇,王新东,高飞.Ag/C包覆对Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2电化学性能的影响(英文)[J].物理化学学报,2014,30(9):1667-1673. 被引量:2
  • 6Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621. doi: 10.1038/nmat2448.
  • 7Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567. doi: 10.1016/j.electacta.2006.03.016.
  • 8Papageorgiou, N.; Athanassov, Y.; Armand, M.; Bonhote, P.; Pettersson, H.; Azam, A.; Gr~itzel, M. J. Electroehem. Soe. 1996, 143, 3099.
  • 9Fung, Y. S.; Zhou, R. Q. J. Power Sources 1999, 81/82, 891.
  • 10Henderson, W. A.; Young, V. G.; Fox, D. M. Chem. Commun. 2006, No. 12, 3708.

二级参考文献43

  • 1杨箫,倪江锋,黄友元,陈继涛,周恒辉,张新祥.钛掺杂对不同形貌LiCoO_2电化学性能的影响[J].物理化学学报,2006,22(2):183-188. 被引量:7
  • 2Tsunashima, K.; Sugiya, M. Electrochem. Commun. 2007, 9, 2353.
  • 3Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Watanabe, M.; Terada, N. Chem. Commun. 2006, 544.
  • 4Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc. 2004, 126, 3026.
  • 5Du, Z.; Yu, Y. L.; Wang, J. H. Chem. Eur. J. 2007, 13, 2130.
  • 6Endres, F.; Abedin, S. Z. E. Phys. Chem. Chem. Phys. 2006, 8, 2101.
  • 7Fuller, J.; Carlin, R. T.; Long, H. C. D.; Haworth, D. J. Chem Soc. Chem. Commun. 1994, 299.
  • 8Gordon, C. M.; Holbrey, J. D.; Kennedy, R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627.
  • 9Bonh6te, E; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168.
  • 10Camrnarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys Chem. Chem. Phys. 2001, 3, 5192.

共引文献18

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部